Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def polyfit(n, x, y, s=None):
"""
@type n: int
@type x: Matrix or Sequence
@type y: Matrix or Sequence
@type s: Matrix or Sequence or None
@return: tuple
"""
if _polyfit is None:
raise NotImplementedError("Sorry - your ert distribution has been built without lapack support")
if isinstance(x, Matrix):
xm = x
else:
xm = Matrix(len(x), 1)
for i in range(len(x)):
xm[i, 0] = x[i]
if isinstance(y, Matrix):
ym = y
else:
ym = Matrix(len(y), 1)
for i in range(len(y)):
ym[i, 0] = y[i]
if s:
if isinstance(s, Matrix):
sm = s
def polyfit(n, x, y, s=None):
"""
@type n: int
@type x: Matrix or Sequence
@type y: Matrix or Sequence
@type s: Matrix or Sequence or None
@return: tuple
"""
if _polyfit is None:
raise NotImplementedError("Sorry - your ert distribution has been built without lapack support")
if isinstance(x, Matrix):
xm = x
else:
xm = Matrix(len(x), 1)
for i in range(len(x)):
xm[i, 0] = x[i]
if isinstance(y, Matrix):
ym = y
else:
ym = Matrix(len(y), 1)
for i in range(len(y)):
ym[i, 0] = y[i]
if s:
if isinstance(s, Matrix):
sm = s
else:
sm = Matrix(len(s), 1)
for i in range(len(s)):
def __sortFaultLines(self):
N = len(self.__fault_lines)
x = Matrix(N , 1)
y = Matrix(N , 1)
for index,line in enumerate(self.__fault_lines):
xc,yc = line.center()
x[index,0] = xc
y[index,0] = yc
# y = beta[0] + beta[1] * x
# = a + b * x
beta = stat.polyfit(2 , x , y)
a = beta[0]
b = beta[1]
perm_list = []
for index,line in enumerate(self.__fault_lines):
xm = Matrix(len(x), 1)
for i in range(len(x)):
xm[i, 0] = x[i]
if isinstance(y, Matrix):
ym = y
else:
ym = Matrix(len(y), 1)
for i in range(len(y)):
ym[i, 0] = y[i]
if s:
if isinstance(s, Matrix):
sm = s
else:
sm = Matrix(len(s), 1)
for i in range(len(s)):
sm[i, 0] = s[i]
else:
sm = s
beta = Matrix(n, 1)
res = _polyfit(beta, xm, ym, sm)
if not res == LLSQResultEnum.LLSQ_SUCCESS:
raise Exception("Linear Least Squares Estimator failed?")
l = []
for i in range(n):
l.append(beta[i, 0])
return tuple(l)
def scale(self, S, E=None, D=None, R=None, D_obs=None):
assert isinstance(S, Matrix)
for X in (E,D,R,D_obs):
if X is not None:
assert isinstance(X, Matrix)
self._scale(S, E, D, R, D_obs)
def calculatePrincipalComponents(cls, S0, D_obs, truncation, ncomp, PC, PC_obs, singular_values):
assert isinstance(S0, Matrix)
assert isinstance(D_obs, Matrix)
assert isinstance(truncation, (float, int))
assert isinstance(ncomp, int)
assert isinstance(PC, Matrix)
assert isinstance(PC_obs, Matrix)
assert isinstance(singular_values , DoubleVector)
cls._get_PC(S0, D_obs, truncation, ncomp, PC, PC_obs , singular_values)
def __init__(self, name, principal_component_matrix, observation_principal_component_matrix, singular_values):
assert isinstance(name, str)
assert isinstance(principal_component_matrix, Matrix)
assert isinstance(observation_principal_component_matrix, Matrix)
c_pointer = self._alloc(name, principal_component_matrix, observation_principal_component_matrix , singular_values)
super(PcaPlotData, self).__init__(c_pointer)
def __init__(self, name, principal_component_matrix, observation_principal_component_matrix):
assert isinstance(name, str)
assert isinstance(principal_component_matrix, Matrix)
assert isinstance(observation_principal_component_matrix, Matrix)
c_pointer = PcaPlotData.cNamespace().alloc(name, principal_component_matrix, observation_principal_component_matrix)
super(PcaPlotData, self).__init__(c_pointer)
def __init__(self, component, principal_component_matrix, observation_principal_component_matrix):
assert isinstance(component, int)
assert isinstance(principal_component_matrix, Matrix)
assert isinstance(observation_principal_component_matrix, Matrix)
c_pointer = PcaPlotVector.cNamespace().alloc(component, principal_component_matrix, observation_principal_component_matrix)
super(PcaPlotVector, self).__init__(c_pointer)
def scale(self, S, E=None, D=None, R=None, D_obs=None):
assert isinstance(S, Matrix)
for X in (E,D,R,D_obs):
if X is not None:
assert isinstance(X, Matrix)
self._scale(S, E, D, R, D_obs)