How to use the earthpy.plot.hist function in earthpy

To help you get started, we’ve selected a few earthpy examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github earthlab / earthpy / examples / plot_stack_masks.py View on Github external
arr_st, meta = es.stack(landsat_paths_pre)

# Import the landsat qa layer
with rio.open(
    "data/cold-springs-fire/landsat_collect/LC080340322016070701T1-SC20180214145604/crop/LC08_L1TP_034032_20160707_20170221_01_T1_pixel_qa_crop.tif"
) as landsat_pre_cl:
    landsat_qa = landsat_pre_cl.read(1)
    landsat_ext = plotting_extent(landsat_pre_cl)

###############################################################################
# Plot Histogram of Each Band in Your Data
# ----------------------------------------
# You can view a histogram for each band in your dataset by using the
# ``hist()`` function from the ``earthpy.plot`` module.

ep.hist(arr_st)
plt.show()

###############################################################################
# Customize Histogram Plot with Titles and Colors
# -----------------------------------------------

ep.hist(
    arr_st,
    colors=["blue"],
    title=[
        "Band 1",
        "Band 2",
        "Band 3",
        "Band 4",
        "Band 5",
        "Band 6",
github earthlab / earthpy / examples / plot_hist_functionality.py View on Github external
# sphinx_gallery_thumbnail_number = 1
ep.hist(array_stack, colors=colors_list, title=titles)
plt.show()

###############################################################################
# Customize Bin Size and Arrangement of Histograms
# -------------------------------------------------
#
# You can customize the number of bins each histogram plot uses to group the
# data it is plotting. The default number is 20. This can be adjusted to match
# the data you are trying to display. Additionally, you can change the
# arrangement of the image overall by modifying the number of columns used
# to plot the data.

# Plot each histogram with 50 bins, arranged across three columns
ep.hist(array_stack, bins=50, cols=3)
plt.show()
github earthlab / earthpy / examples / plot_hist_functionality.py View on Github external
"midnightblue",
    "Blue",
    "Green",
    "Red",
    "Maroon",
    "Purple",
    "Violet",
]

# Create the list of titles for each band. The titles and colors listed
# in this example reflect the order and wavelengths of the Landsat 8 bands
titles = ["Ultra Blue", "Blue", "Green", "Red", "NIR", "SWIR 1", "SWIR 2"]

# Plot the histograms with the color and title lists you just created
# sphinx_gallery_thumbnail_number = 1
ep.hist(array_stack, colors=colors_list, title=titles)
plt.show()

###############################################################################
# Customize Bin Size and Arrangement of Histograms
# -------------------------------------------------
#
# You can customize the number of bins each histogram plot uses to group the
# data it is plotting. The default number is 20. This can be adjusted to match
# the data you are trying to display. Additionally, you can change the
# arrangement of the image overall by modifying the number of columns used
# to plot the data.

# Plot each histogram with 50 bins, arranged across three columns
ep.hist(array_stack, bins=50, cols=3)
plt.show()
github earthlab / earthpy / examples / plot_raster_stack_crop.py View on Github external
ep.hist(array, title=["Band 1", "Band 2", "Band 3"])
plt.show()

###########################################################################
# No Data Option
# ---------------
# ``es.stack()`` can handle ``nodata`` values in a raster. To use this
# parameter, specify ``nodata=``. This will mask every pixel that contains
# the specified ``nodata`` value. The output will be a numpy masked array.

os.chdir(os.path.join(et.io.HOME, "earth-analytics"))
array_nodata, raster_prof_nodata = es.stack(stack_band_paths, nodata=-9999)

# View hist of data with nodata values removed
ep.hist(
    array_nodata,
    title=[
        "Band 1 - No Data Values Removed",
        "Band 2 - No Data Values Removed",
        "Band 3 - No Data Values Removed",
    ],
)
plt.show()

# Recreate extent object for the No Data array

extent_nodata = plotting_extent(
    array_nodata[0], raster_prof_nodata["transform"]
)

################################################################################
github earthlab / earthpy / examples / plot_raster_stack_crop.py View on Github external
stretch=True,
    extent=extent,
    str_clip=0.5,
    title="RGB Image of Un-cropped Raster",
)
plt.show()


################################################################################
# Explore the Range of Values in the Data
# ---------------------------------------
# You can explore the range of values found in the data using the EarthPy ``hist()``
# function. Do you notice any extreme values that may be impacting the stretch
# of the image?

ep.hist(array, title=["Band 1", "Band 2", "Band 3"])
plt.show()

###########################################################################
# No Data Option
# ---------------
# ``es.stack()`` can handle ``nodata`` values in a raster. To use this
# parameter, specify ``nodata=``. This will mask every pixel that contains
# the specified ``nodata`` value. The output will be a numpy masked array.

os.chdir(os.path.join(et.io.HOME, "earth-analytics"))
array_nodata, raster_prof_nodata = es.stack(stack_band_paths, nodata=-9999)

# View hist of data with nodata values removed
ep.hist(
    array_nodata,
    title=[
github earthlab / earthpy / examples / plot_stack_masks.py View on Github external
landsat_ext = plotting_extent(landsat_pre_cl)

###############################################################################
# Plot Histogram of Each Band in Your Data
# ----------------------------------------
# You can view a histogram for each band in your dataset by using the
# ``hist()`` function from the ``earthpy.plot`` module.

ep.hist(arr_st)
plt.show()

###############################################################################
# Customize Histogram Plot with Titles and Colors
# -----------------------------------------------

ep.hist(
    arr_st,
    colors=["blue"],
    title=[
        "Band 1",
        "Band 2",
        "Band 3",
        "Band 4",
        "Band 5",
        "Band 6",
        "Band 7",
    ],
)
plt.show()

###############################################################################
# View Single Band Plots

earthpy

A set of helper functions to make working with spatial data in open source tools easier. This package is maintained by Earth Lab and was originally designed to support the earth analytics education program.

BSD-3-Clause
Latest version published 3 years ago

Package Health Score

57 / 100
Full package analysis

Similar packages