How to use the earthpy.plot function in earthpy

To help you get started, we’ve selected a few earthpy examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github earthlab / earthpy / examples / calculate_classify_ndvi.py View on Github external
# Landsat 8 red band is band 4 at [3]
# Landsat 8 near-infrared band is band 5 at [4]
ndvi = es.normalized_diff(arr_st[4], arr_st[3])


###############################################################################
# Plot NDVI With Colorbar Legend of Continuous Values
# ----------------------------------------------------

# You can plot NDVI with a colorbar legend of continuous values using the
# ``plot_bands`` function from the ``earthpy.plot`` module.

titles = ["Landsat 8 - Normalized Difference Vegetation Index (NDVI)"]

# Turn off bytescale scaling due to float values for NDVI
ep.plot_bands(
    ndvi, cmap="RdYlGn", cols=1, title=titles, scale=False, vmin=-1, vmax=1
)


###############################################################################
# Classify NDVI
# -------------

# Next, you can classify the NDVI to categorize the results into useful classes.
# Values under 0 will be classified together as no vegetation. Additional classes
# will be created for bare area # and low, moderate, and high vegetation areas.

# Create classes and apply to NDVI results
ndvi_class_bins = [-np.inf, 0, 0.1, 0.25, 0.4, np.inf]
ndvi_landsat_class = np.digitize(ndvi, ndvi_class_bins)
github earthlab / earthpy / examples / plot_dem_hillshade.py View on Github external
# ---------------
# To begin, open your DEM layer as a numpy array using Rasterio. Below you set all
# terrain values < 0 to ``nan``. Next, plot the data using ``ep.plot_bands()``.

# Set the home directory and get the data for the exercise
os.chdir(os.path.join(et.io.HOME, "earth-analytics"))
dtm = "data/vignette-elevation/pre_DTM.tif"

# Open the DEM with Rasterio
with rio.open(dtm) as src:
    elevation = src.read(1)
    # Set masked values to np.nan
    elevation[elevation < 0] = np.nan

# Plot the data
ep.plot_bands(
    elevation,
    scale=False,
    cmap="gist_earth",
    title="DTM Without Hillshade",
    figsize=(10, 6),
)
plt.show()

####################################################################################
# Create the Hillshade
# --------------------
# Once the DEM is read in, call ``es.hillshade()`` to create the hillshade.

# Create and plot the hillshade with earthpy
hillshade = es.hillshade(elevation)
github earthlab / earthpy / examples / plot_dem_hillshade.py View on Github external
)
plt.show()

####################################################################################
# Change the Angle Altitude of the Sun
# -------------------------------------
# Another variable you can adjust for hillshade is what angle of the sun.
# The ``angle_altitude`` parameter values range from 0 to 90. 90 represents the sun
# shining from directly above the scene. The default value for ``angle_altitude`` in
# ``es.hillshade()`` is 30 degrees.

# Adjust the azimuth value
hillshade_angle_10 = es.hillshade(elevation, altitude=10)

# Plot the hillshade layer with the modified angle altitude
ep.plot_bands(
    hillshade_angle_10,
    scale=False,
    cbar=False,
    title="Hillshade with Angle Altitude set to 10 Degrees",
    figsize=(10, 6),
)
plt.show()

####################################################################################
# Overlay a DEM on top of the Hillshade
# -------------------------------------
# A hillshade can be used to visually enhance a DEM.
# To overlay the data, use the ``ep.plot_bands()`` function in EarthPy combined with
# ``ax.imshow()``. The alpha setting sets the tranparency value for the hillshade layer.

# Plot the DEM and hillshade at the same time
github earthlab / earthpy / examples / plot_calculate_classify_ndvi.py View on Github external
# Landsat 8 red band is band 4 at [3]
# Landsat 8 near-infrared band is band 5 at [4]
ndvi = es.normalized_diff(arr_st[4], arr_st[3])


###############################################################################
# Plot NDVI With Colorbar Legend of Continuous Values
# ----------------------------------------------------
#
# You can plot NDVI with a colorbar legend of continuous values using the
# ``plot_bands`` function from the ``earthpy.plot`` module.

titles = ["Landsat 8 - Normalized Difference Vegetation Index (NDVI)"]

# Turn off bytescale scaling due to float values for NDVI
ep.plot_bands(
    ndvi, cmap="RdYlGn", cols=1, title=titles, scale=False, vmin=-1, vmax=1
)


###############################################################################
# Classify NDVI
# -------------
#
# Next, you can categorize (or classify) the NDVI results into useful classes.
# Values under 0 will be classified together as no vegetation. Additional classes
# will be created for bare area and low, moderate, and high vegetation areas.

# Create classes and apply to NDVI results
ndvi_class_bins = [-np.inf, 0, 0.1, 0.25, 0.4, np.inf]
ndvi_landsat_class = np.digitize(ndvi, ndvi_class_bins)
github earthlab / earthpy / examples / plot_bands_functionality.py View on Github external
# plot NDVI with scaling turned off in order for the proper range of values
# (-1 to 1) to be displayed. You can use the ``cmap=`` parameter to adjust
# the colormap for the plot

NDVI = es.normalized_diff(array_stack[4], array_stack[3])
ep.plot_bands(NDVI, scale=False, cmap="RdYlGn")
plt.show()

##################################################################################
# Adjust the Number of Columns for a Multi Band Plot
# ---------------------------------------------------
#
# The number of columns used while plotting multiple bands can be changed in order
# to change the arrangement of the images overall.

ep.plot_bands(array_stack, cols=2)
plt.show()

earthpy

A set of helper functions to make working with spatial data in open source tools easier. This package is maintained by Earth Lab and was originally designed to support the earth analytics education program.

BSD-3-Clause
Latest version published 3 years ago

Package Health Score

57 / 100
Full package analysis

Similar packages