Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def _loadAddressCache(self):
# DO NOT SORT LIST. c'est des sequences. pas des sets.
myname = self.cacheFilenamePrefix + '.pinned.vaddr'
if os.access(myname, os.F_OK):
addressCache = dill.load(file(myname, 'r'))
log.debug(
"%d Signature addresses loaded from cache." %
(len(addressCache)))
self.addressCache.update(addressCache)
else: # get at least 10 values
for i in xrange(0, len(self), len(self) / 10):
self.getAddressForPreviousPointer(i)
self._saveAddressCache()
return
def implication(events, functions):
try:
# load implications store
implications = dill.load(open(os.path.expanduser('~/.ergo/.events')))
except IOError:
# initialize the implications as a blank dictionary.
# if the file doesn't already exist, it will be dumped
# with the new data created.
implications = {}
if not isinstance(events, list):
events = [events]
if not isinstance(functions, list):
functions = [functions]
for event in events:
implications[event] = implications.get(event, []) + functions
def _load_tree(self, path):
with open(path, 'rb') as f:
tree_memory = pickle.load(f)
return tree_memory
def prepare_dataloaders(opt, device):
batch_size = opt.batch_size
data = pickle.load(open(opt.data_pkl, 'rb'))
if opt.vocab_file and os.path.isfile(opt.vocab_file):
data_vocab = pickle.load(open(opt.vocab_file, 'rb'))
data['vocab'] = data_vocab['vocab']
data['settings'].max_len = len(data_vocab['vocab']['src'].vocab.stoi)
print(len(data['vocab']['txt'].vocab), len(data_vocab['vocab']['txt'].vocab), 'length of vocab.')
fields = {'src': data['vocab']['txt'], 'trg': data['vocab']['txt']}
if opt.embs_share_weight:
assert data['vocab']['src'].vocab.stoi == data['vocab']['trg'].vocab.stoi, \
'To sharing word embedding the src/trg word2idx table shall be the same.'
def undillify(url, str_version = False):
'''Reads back in a serialized object matching the filename of the given url'''
fn = os.path.join('webpage_cache', strip_url(url) + '.dill')
string_version = dill.load(open(fn, 'rb'))
if str_version:
return string_version
else:
return BeautifulSoup(string_version)
Ah = "relu", # hidden unit activation (e.g. relu, tanh, lstm)
Ay = "linear", # output unit activation (e.g. linear, sigmoid, softmax)
predictPer = "frame", # frame or sequence
loss = None, # loss function (e.g. mse, ce, ce_group, hinge, squared_hinge)
L1reg = 0.0, # L1 regularization
L2reg = 0.0, # L2 regularization
momentum = 0.0, # SGD momentum
seed = 15213, # random seed for initializing the weights
frontEnd = None, # a lambda function for transforming the input
filename = None, # initialize from file
initParams = None, # initialize from given dict
):
if filename is not None: # load parameters from file
with smart_open(filename, "rb") as f:
initParams = dill.load(f)
if initParams is not None: # load parameters from given dict
self.paramNames = []
self.params = []
for k, v in initParams.iteritems():
if type(v) is numpy.ndarray:
self.addParam(k, v)
else:
setattr(self, k, v)
self.paramNames.append(k)
# F*ck, locals()[k] = v doesn't work; I have to do this statically
Nlayers, Ndirs, Nx, Nh, Ny, Ah, Ay, predictPer, loss, L1reg, L2reg, momentum, frontEnd \
= self.Nlayers, self.Ndirs, self.Nx, self.Nh, self.Ny, self.Ah, self.Ay, self.predictPer, self.loss, self.L1reg, self.L2reg, self.momentum, self.frontEnd
else: # Initialize parameters randomly
# Names of parameters to save to file
self.paramNames = ["Nlayers", "Ndirs", "Nx", "Nh", "Ny", "Ah", "Ay", "predictPer", "loss", "L1reg", "L2reg", "momentum", "frontEnd"]
for name in self.paramNames:
FILENAME: filename}
except librosa.util.exceptions.ParameterError as e:
logger.error(e)
logger.error('[DUMP AUDIO ERROR SKIPPING FILENAME] {}'.format(filename))
dill.dump(self.metadata, open(os.path.join(TMP_DIR, 'metadata.pkl'), 'wb'))
logger.debug(
'Using the generated files at {}. Using them to load the cache. Be sure to have enough memory.'.format(
TMP_DIR))
self.metadata = dill.load(open(os.path.join(TMP_DIR, 'metadata.pkl'), 'rb'))
pickle_files = find_files(TMP_DIR, pattern='*.pkl')
for pkl_file in tqdm(pickle_files, desc='reading cache'):
if 'metadata' not in pkl_file:
with open(pkl_file, 'rb') as f:
obj = dill.load(f)
self.cache[obj[FILENAME]] = obj
logger.debug('Cache took {0:.2f} seconds to load. {1:} keys.'.format(time() - st, len(self.cache)))
def transfer_load(infile):
u"""Reloads an instance of the :class:`transfer `
-class dumped with :meth:`transfer_dump `
Parameters
----------
infile : :obj:`str`
Filename (absolute or relative) under which the transfer instance is stored
Returns
-------
:obj:`class`
Restored instance of the :class:`transfer `-class
"""
loaded_transfer = dill.load(open(infile, 'rb'))
if not isinstance(loaded_transfer, transfer):
from .__init__ import DarkAgesError
raise DarkAgesError('The file {0} does not provide a proper instance of the class "transfer"'.format(infile))
else:
return loaded_transfer
import scipy.ndimage as ndimage
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
#Load image
img=Image.open('terrain_test2.jpg')
img=np.array(img)
img=np.asfarray(img)/255.0 #Scale to unity scale (and convert to float - important)
img=ndimage.gaussian_filter(img,sigma=5,order=0) #Smooth image
Xcoords=np.linspace(0,10,len(img[:,0])) #North Coordinates
Ycoords=Xcoords[0:len(img[0,:])] #East Coordinates
terr_spl=interpolate.RectBivariateSpline(Xcoords,Ycoords,img,kx=3,ky=3,s=10)
#Load data
f = open('data.dill','rb')
out=dill.load(f)
f.close()
xsol=out['solution'][-1][-1].y[0,:]
ysol=out['solution'][-1][-1].y[1,:]
lamXsol=out['solution'][-1][-1].y[2,:]
lamYsol=out['solution'][-1][-1].y[3,:]
tf=out['solution'][-1][-1].y[4,0]
tsol=out['solution'][-1][-1].x*tf
#Plot contour plot
Xcoords=np.linspace(0,10,len(img[:,0]))
Ycoords=Xcoords[0:len(img[0,:])]
Y,X = np.meshgrid(Ycoords, Xcoords)
terrData=terr_spl.ev(X,Y) #Create the elevation data based on the spline fit
plt.figure(1)
plt.axis([0,Ycoords[-1],0,Xcoords[-1]])
def load(path):
f = open(path, "rb")
result = pickle.load(f)
f.close()
return result