How to use the dill.HIGHEST_PROTOCOL function in dill

To help you get started, we’ve selected a few dill examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github pymir3 / pymir3 / scripts / acf / tr_hmm.py View on Github external
all_trains = np.vstack( (all_trains, np.array(features[i])) )
            train_lengths.append(features[i].shape[0])

        scaler = StandardScaler().fit(all_trains)

        X_train = [scaler.transform(features[i]) for i in xrange(len(features))]

        cl.fit(X_train, labels, train_lengths, workers=self.params['hmm']['n_workers'])

        out_filename = self.params['general']['scratch_directory'] + "/" + self.params['model_training']['output_model']
        outfile = open(out_filename, "w")
        dill.dump(cl, outfile, dill.HIGHEST_PROTOCOL )
        outfile.close()

        outfile_scaler = open('%s.scaler' % out_filename, "w")
        dill.dump(scaler, outfile_scaler, dill.HIGHEST_PROTOCOL)
        outfile_scaler.close()
github pymir3 / pymir3 / scripts / acf / tr_svm_reg.py View on Github external
n_jobs=self.params['svm_reg']['num_workers'])
        scaler.fit(features)
        features = scaler.transform(features)
        estimator.fit(features, labels)
        T1 = time.time()

        print "model training took %f seconds" % (T1-T0)
        print "best model score: %f" % (estimator.best_score_)
        best_percentile = estimator.best_estimator_.named_steps['anova'].percentile
        best_c = estimator.best_estimator_.named_steps['svm'].C
        best_gamma = estimator.best_estimator_.named_steps['svm'].gamma
        print "best params found for SVM: C = %.2ef, gamma = %.2ef" % (best_c, best_gamma)
        print "best params found for ANOVA: percetile = %d" % (best_percentile)
        print "saved best model to %s" % (out_filename)
        outfile = open(out_filename, "w")
        dill.dump(estimator.best_estimator_, outfile, dill.HIGHEST_PROTOCOL )

        outfile_scaler = open('%s.scaler' % out_filename, "w")
        dill.dump(scaler, outfile_scaler, dill.HIGHEST_PROTOCOL)
github pymir3 / pymir3 / scripts / acf / tr_svm_reg.py View on Github external
estimator.fit(features, labels)
        T1 = time.time()

        print "model training took %f seconds" % (T1-T0)
        print "best model score: %f" % (estimator.best_score_)
        best_percentile = estimator.best_estimator_.named_steps['anova'].percentile
        best_c = estimator.best_estimator_.named_steps['svm'].C
        best_gamma = estimator.best_estimator_.named_steps['svm'].gamma
        print "best params found for SVM: C = %.2ef, gamma = %.2ef" % (best_c, best_gamma)
        print "best params found for ANOVA: percetile = %d" % (best_percentile)
        print "saved best model to %s" % (out_filename)
        outfile = open(out_filename, "w")
        dill.dump(estimator.best_estimator_, outfile, dill.HIGHEST_PROTOCOL )

        outfile_scaler = open('%s.scaler' % out_filename, "w")
        dill.dump(scaler, outfile_scaler, dill.HIGHEST_PROTOCOL)
github noyoshi / smart-sketch / backend / util / util.py View on Github external
def save_obj(obj, name ):
    with open(name, 'wb') as f:
        pickle.dump(obj, f, pickle.HIGHEST_PROTOCOL)
github DISROPT / disropt / examples / setups / svm / launcher.py View on Github external
n_iter = NN*3

# run the algorithm
constrcons_seq = constrcons.run(iterations=n_iter, verbose=True)

# print results
constrcons_x = constrcons.get_result()

print("Agent {}: {}".format(agent_id, constrcons_x.flatten()))  # save information

if agent_id == 0:
    with open('info.pkl', 'wb') as output:
        pickle.dump({'N': NN, 'size': NN+dim+1, 'iterations': n_iter}, output, pickle.HIGHEST_PROTOCOL)
    with open('objective_function.pkl', 'wb') as output:
        pickle.dump(obj_func, output, pickle.HIGHEST_PROTOCOL)

with open('agent_{}_constr.pkl'.format(agent_id), 'wb') as output:
    pickle.dump(constr, output, pickle.HIGHEST_PROTOCOL)
np.save("agent_{}_seq.npy".format(agent_id), constrcons_seq)
github DISROPT / disropt / examples / algorithms / distributed_ADMM / launcher.py View on Github external
algorithm = ADMM(agent=agent,
                 initial_lambda=initial_lambda,
                 initial_z=initial_z,
                 enable_log=True)

# run the algorithm
x_sequence, lambda_sequence, z_sequence = algorithm.run(iterations=100, penalty=0.1, verbose=True)
x_t, lambda_t, z_t = algorithm.get_result()
print("Agent {}: primal {} dual {} auxiliary primal {}".format(agent.id, x_t.flatten(), lambda_t, z_t.flatten()))

np.save("agents.npy", nproc)

# save agent and sequence
if local_rank == 0:
    with open('constraints.pkl', 'wb') as output:
        pickle.dump(constr, output, pickle.HIGHEST_PROTOCOL)
with open('agent_{}_function.pkl'.format(agent.id), 'wb') as output:
    pickle.dump(agent.problem.objective_function, output, pickle.HIGHEST_PROTOCOL)
with open('agent_{}_dual_sequence.pkl'.format(agent.id), 'wb') as output:
    pickle.dump(lambda_sequence, output, pickle.HIGHEST_PROTOCOL)
np.save("agent_{}_primal_sequence.npy".format(agent.id), x_sequence)
np.save("agent_{}_auxiliary_primal_sequence.npy".format(agent.id), z_sequence)
github ildoonet / remote-dataloader / remote_dataloader / common.py View on Github external
def byte_message(myid, code, message):
    return pickle.dumps({
        'myid': myid,
        'code': code,
        'message': message
    }, protocol=pickle.HIGHEST_PROTOCOL)
github laempy / pyoints / pyoints / storage / DumpHandler.py View on Github external
def loadDump(filename):
    """Loads a dump file.

    Parameters
    ----------
    filename : String
        Dump file to load.

    Returns
    -------
    object

    """
    with open(filename, 'rb') as f:
        return pickle.load(f, pickle.HIGHEST_PROTOCOL)
github irmen / Pyro4 / src / Pyro4 / configuration.py View on Github external
self.ONEWAY_THREADED = True  # oneway calls run in their own thread
        self.DETAILED_TRACEBACK = False
        self.THREADPOOL_SIZE = 40
        self.THREADPOOL_SIZE_MIN = 4
        self.AUTOPROXY = True
        self.MAX_MESSAGE_SIZE = 0  # 0 = unlimited
        self.BROADCAST_ADDRS = ", 0.0.0.0"  # comma separated list of broadcast addresses
        self.FLAME_ENABLED = False
        self.PREFER_IP_VERSION = 4  # 4, 6 or 0 (let OS choose according to RFC 3484)
        self.SERIALIZER = "serpent"
        self.SERIALIZERS_ACCEPTED = "serpent,marshal,json"   # these are the 'safe' serializers that are always available
        self.LOGWIRE = False  # log wire-level messages
        self.PICKLE_PROTOCOL_VERSION = pickle.HIGHEST_PROTOCOL
        try:
            import dill
            self.DILL_PROTOCOL_VERSION = dill.HIGHEST_PROTOCOL  # Highest protocol
        except ImportError:
            self.DILL_PROTOCOL_VERSION = -1
        self.METADATA = True  # get metadata from server on proxy connect
        self.REQUIRE_EXPOSE = True  # require @expose to make members remotely accessible (if False, everything is accessible)
        self.USE_MSG_WAITALL = hasattr(socket, "MSG_WAITALL") and platform.system() != "Windows"  # waitall is not reliable on windows
        self.JSON_MODULE = "json"
        self.MAX_RETRIES = 0
        self.ITER_STREAMING = True
        self.ITER_STREAM_LIFETIME = 0.0
        self.ITER_STREAM_LINGER = 30.0
        self.SSL = False
        self.SSL_SERVERCERT = ""
        self.SSL_SERVERKEY = ""
        self.SSL_SERVERKEYPASSWD = ""
        self.SSL_REQUIRECLIENTCERT = False
        self.SSL_CLIENTCERT = ""
github Rapid-Design-of-Systems-Laboratory / beluga / beluga / bvpsol / algorithms / joblib / pool.py View on Github external
def reduce_memmap(a):
    """Pickle the descriptors of a memmap instance to reopen on same file"""
    m = _get_backing_memmap(a)
    if m is not None:
        # m is a real mmap backed memmap instance, reduce a preserving striding
        # information
        return _reduce_memmap_backed(a, m)
    else:
        # This memmap instance is actually backed by a regular in-memory
        # buffer: this can happen when using binary operators on numpy.memmap
        # instances
        return (loads, (dumps(np.asarray(a), protocol=HIGHEST_PROTOCOL),))