Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def __init__(self, **kwargs):
Calculator.__init__(self, **kwargs)
def __init__(self, **kwargs):
Calculator.__init__(self, **kwargs)
# Set the verbose status
self.verbose = verbose
self.debug_cluster_carving = False
# Set storing atoms - slows down evaluation but enables check_state funtion
self.enable_check_state = enable_check_state
# Flag for warmup
self.warmup = False
# Init ASE calculator as a parent class
self._calc_args = {}
self._default_properties = []
self.calculation_always_required = calculation_always_required
Calculator.__init__(self)
# If an atoms objct has been specified, attach a copy to the calculator to facilitate
# the proper use of meth:check_state()
if atoms is not None:
self.atoms = atoms.copy()
atoms.set_calculator(self)
# Set some flags and values
self.errors = {}
self.calculate_errors = calculate_errors
self.change_bonds = change_bonds
self.buffer_hops = buffer_hops
self.conserve_momentum = False
self.long_range_weight = 0.0
self.doParallel = True
def __init__(self, calc1, calc2, weight1, weight2):
Calculator.__init__(self)
self.calc1 = calc1
self.calc2 = calc2
self.weight1 = weight1
self.weight2 = weight2
def __init__(self, *args, **kwargs):
Calculator.__init__(self, *args, **kwargs)
self.crystal_bonds = 0
self.interaction = interaction
self.vacuum = vacuum
self.embedding = embedding
self.qmatoms = None
self.mmatoms = None
self.mask = None
self.center = None # center of QM atoms in QM-box
self.name = '{0}+{1}+{2}'.format(qmcalc.name,
interaction.name,
mmcalc.name)
self.output = convert_string_to_fd(output)
Calculator.__init__(self)
def __init__(self, **kwargs):
"""
Parameters
----------
epsilon: float
Absolute minimum depth, default 1.0
r0: float
Minimum distance, default 1.0
rho0: float
Exponential prefactor. The force constant in the potential minimum
is k = 2 * epsilon * (rho0 / r0)**2, default 6.0
"""
Calculator.__init__(self, **kwargs)
def __init__(self, train_images=None, prior=None,
update_prior_strategy='maximum', weight=1.,
fit_weight=None, scale=0.4, noise=0.005,
update_hyperparams=False,
batch_size=5, bounds=None, kernel=None,
max_train_data=None, force_consistent=None,
max_train_data_strategy='nearest_observations',
wrap_positions=False, calculate_uncertainty=True,
mask_constraints = True,
**kwargs):
Calculator.__init__(self, **kwargs)
self.prior = prior
self.strategy = update_prior_strategy
self.weight = weight
self.scale = scale
self.noise = noise
self.update_hp = update_hyperparams
self.nbatch = batch_size
self.hyperbounds = bounds
self.fc = force_consistent
self.max_data = max_train_data
self.max_data_strategy = max_train_data_strategy
self.kernel = kernel
self.train_images = train_images
self.old_train_images = []
self.prev_train_y = [] # Do not retrain model if same data.
self.calculate_uncertainty = calculate_uncertainty
def __init__(self, parameters, get_variance=False, **kwargs):
Calculator.__init__(self, **kwargs)
self.gp = parameters
self.get_variance = get_variance
self.vdWDB_alphaC6 = vdWDB_alphaC6
self.Rmax = Rmax
self.Ldecay = Ldecay
self.atoms = None
if sR is None:
try:
xc_name = self.calculator.get_xc_functional()
self.sR = sR_opt[xc_name]
except KeyError:
raise ValueError('Tkatchenko-Scheffler dispersion correction not implemented for %s functional' % xc_name)
else:
self.sR = sR
self.d = 20
Calculator.__init__(self)