Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
dbfile.close()
# xls or xslx
elif 'xls' in extension:
ALERT("database file detected as xls or xlsx based on extension", ALERT.NORMAL)
try:
import xlrd
except ImportError as e:
ALERT("please install and upgrade the python-xlrd library", ALERT.BAD)
exit(1)
# open the xls file
try:
wb = xlrd.open_workbook(ARGS.database)
except IOError as e:
ALERT("no such file or directory '%s'. ensure you have the correct database file passed in --database/-d" % ARGS.database, ALERT.BAD)
exit(1)
sh = wb.sheet_by_name('Bulletin Search')
# read the spreadsheet into a temp file
f = NamedTemporaryFile(mode='wb')
wr = csv.writer(f, quoting=csv.QUOTE_NONE, delimiter=',')
data = ''
# loop through xls
for rownum in xrange(sh.nrows):
values = sh.row_values(rownum)
def decodeExcel(data, worksheet, row=None, column=None):
"""
Decode excel file
"""
content = None
# old file format
try:
wb = xlrd.open_workbook(file_contents=data)
except Exception as e:
raise TestPropertiesException('ERR_PRO_023: excel data not supported')
# read sheet
try:
ws = wb.sheet_by_name(worksheet)
except Exception as e:
wb.release_resources()
raise TestPropertiesException('ERR_PRO_024: worksheet %s does not exists on excel file' % worksheet)
# read cell
if row is not None and column is not None:
col = ws.col_values( int(column) )
content = col[ int(row) ]
# read column
def __init__(self, path, worksheet=None, in_memory=False):
"""Initialize self."""
try:
import xlrd
except ImportError:
raise ImportError(
"No module named 'xlrd'\n"
"\n"
"This is an optional data source that requires the "
"third-party library 'xlrd'."
)
self._file_repr = repr(path)
# Open Excel file and get worksheet.
book = xlrd.open_workbook(path, on_demand=True)
if worksheet:
sheet = book.sheet_by_name(worksheet)
else:
sheet = book.sheet_by_index(0)
# Build SQLite table from records, release resources.
iterrows = (sheet.row(i) for i in range(sheet.nrows))
iterrows = ([x.value for x in row] for row in iterrows)
columns = next(iterrows) # <- Get header row.
connection, table = _load_temp_sqlite_table(columns, iterrows)
book.release_resources()
# Calling super() with older convention to support Python 2.7 & 2.6.
super(ExcelSource, self).__init__(connection, table)
def __init__(self, excelPath, sheetName):
self.data = xlrd.open_workbook(excelPath)
self.table = self.data.sheet_by_name(sheetName)
# 获取第一行作为key值
self.keys = self.table.row_values(0)
# 获取总行数
self.rowNum = self.table.nrows
# 获取总列数
self.colNum = self.table.ncols
def get_nrows(name):
'''
读取行数
:param name: sheet名称
:return:
'''
alldata=xlrd.open_workbook(file)
sheet = alldata.sheet_by_name(name)
nrows = sheet.nrows
return nrows
"District Nord": "Ourossogui", # specific to the 1 current case ;)
}
# @ToDo:
# - Allow filtering to just a single country
# - Allow filtering to a range of dates (priority: since xxx to get a diff. NB This is just to save time, since the deduplicator should prevent dupes)
# - Make script more widely usable?: other resources (e.g. Hospitals)
import string
import urllib2
import xlrd
# Open the file from the remote server
# @todo write the remote file to a temp file and then pass to load_workbook
print "Downloading data..."
u = urllib2.urlopen(SOURCE_URL)
wb = xlrd.open_workbook(file_contents=u.read())
ws = wb.sheet_by_name(SOURCE_SHEET)
# Load models
table = s3db.gis_location
otable = s3db.org_organisation
rejected_loc = {}
new_org = {}
# Utility functions
def lookup_loc(location, country):
"""
Location Names need to match what we have already
"""
corrected = location_names.get(location)
if corrected:
def ingest(self, file_path, entity):
entity.schema = model.get('Workbook')
self.extract_ole_metadata(file_path, entity)
try:
book = xlrd.open_workbook(file_path, formatting_info=False)
except Exception as err:
raise ProcessingException('Invalid Excel file: %s' % err) from err
try:
for sheet in book.sheets():
table = self.manager.make_entity('Table', parent=entity)
table.make_id(entity.id, sheet.name)
table.set('title', sheet.name)
self.emit_row_tuples(table, self.generate_csv(sheet))
if table.has('csvHash'):
self.manager.emit_entity(table)
except XLRDError as err:
raise ProcessingException('Invalid Excel file: %s' % err) from err
finally:
book.release_resources()
def generateDemandPlanning(input_url, PPOSQuantity=1000, PlannedWeek=1, PPOSToBeDisaggregated='PPOS1',
MinPackagingSize=10, planningHorizon=10):
"""Generate random demand from spreadsheet at input_url.
"""
# id is given as an integer and minus one
# ToDo we have to standardize data
# PPOSToBeDisaggregated='PPOS'+str(PPOSToBeDisaggregated+'1')
# Read data from the exported Excel file from RapidMiner and call the Import_Excel object of the KE tool to import this data in the tool
demand_data = urllib.urlopen(input_url).read()
workbook = xlrd.open_workbook(file_contents=demand_data)
worksheets = workbook.sheet_names()
worksheet_RapidMiner = worksheets[0]
A= Import_Excel()
Turnovers=A.Input_data(worksheet_RapidMiner, workbook) #Dictionary with the data from the Excel file
#Create lists with the MAs' names and the Turnovers for the first twelve weeks of 2010 retrieving this data from the dictionary
PPOS=Turnovers.get('Ppos',[])
SP=Turnovers.get('SP',[])
MA=Turnovers.get('FP Material No PGS+',[])
GlobalDemand=Turnovers.get('Global demand',[])
#Call the Distributions object and fit the data from the list in Normal distribution, so as to have info on Global demand (mean and standard deviation)
D=Distributions()
E=HandleMissingValues()
def download_ppt_pic(id_start,id_end,*args, **kwargs):
# set default options
collection = kwargs.get('collection', 'naip')
order = kwargs.get('order', 'normal')
# open the document with coordinates of US power plants
egrid = open_workbook("egrid2014_data_v2_PLNT14.xlsx").sheet_by_index(0) # if your data is on sheet 1
# DEFINE YOUR IMAGE COLLECTION HERE
#************** NAIP imagery **************
if collection=='naip':
collection_naip = ee.ImageCollection('USDA/NAIP/DOQQ').filter(ee.Filter.date('2012-01-01', '2014-12-31'))
# reduce the image stack to one image
image = collection_naip.mosaic()
# resolution = 1m
res = 1
#********** Pan-sharpened Landsat **********
elif collection=='ls8':
# collection_ls8 = ee.ImageCollection('LANDSAT/LC8_L1T_TOA').filterDate('2014-01-01', '2014-12-30')
# # reduce the image stack to every pixel's median value
# img_red = collection_ls8.reduce(ee.Reducer.median())
def load_workbook(self, filepath_or_buffer):
from xlrd import open_workbook
if hasattr(filepath_or_buffer, "read"):
data = filepath_or_buffer.read()
return open_workbook(file_contents=data)
else:
return open_workbook(filepath_or_buffer)