How to use wurlitzer - 8 common examples

To help you get started, we’ve selected a few wurlitzer examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github manodeep / Corrfunc / Corrfunc / utils.py View on Github external
>>> with sys_pipes():  # doctest: +SKIP
    ...    call_some_c_function()

    See the Wurlitzer package for usage of `wurlitzer.pipes()`;
    see also https://github.com/manodeep/Corrfunc/issues/157.
    '''

    kwargs = {'stdout':None if sys.stdout.isatty() else sys.stdout,
              'stderr':None if sys.stderr.isatty() else sys.stderr }

    # Redirection might break for any number of reasons, like
    # stdout/err already being closed/redirected.  We probably
    # prefer not to crash in that case and instead continue
    # without any redirection.
    try:
        with wurlitzer.pipes(**kwargs):
            yield
    except:
        yield
github hanzhi713 / image-collage-maker / make_img.py View on Github external
np_ctype = eval("np." + ctype)
    cost_matrix = np_ctype(cost_matrix)

    print("Computing optimal assignment on a {}x{} matrix...".format(
        cost_matrix.shape[0], cost_matrix.shape[1]))

    from lapjv import lapjv

    if v is not None and (platform.system() == "Linux" or platform.system() == "Darwin") and v.gui:
        try:
            from wurlitzer import pipes, STDOUT
            from wurlitzer import Wurlitzer
            Wurlitzer.flush_interval = 0.1
            wrapper = JVOutWrapper(v)
            with pipes(stdout=wrapper, stderr=STDOUT):
                _, cols, cost = lapjv(cost_matrix, verbose=1)
                wrapper.finish()
        except ImportError:
            _, cols, cost = lapjv(cost_matrix)

    else:
        _, cols, cost = lapjv(cost_matrix)

    cost = cost[0]

    print("Total assignment cost:", cost)
    print("Time taken: {}s".format((np.round(time.time() - t, 2))))

    # sometimes the cost matrix may be extremely large
    # manually delete it to free memory
    del cost_matrix
github hanzhi713 / image-collage-maker / make_img.py View on Github external
np_ctype = eval("np." + ctype)
    cost_matrix = np_ctype(cost_matrix)

    print("Computing optimal assignment on a {}x{} matrix...".format(
        cost_matrix.shape[0], cost_matrix.shape[1]))

    from lapjv import lapjv

    if v is not None and (platform.system() == "Linux" or platform.system() == "Darwin") and v.gui:
        try:
            from wurlitzer import pipes, STDOUT
            from wurlitzer import Wurlitzer
            Wurlitzer.flush_interval = 0.1
            wrapper = JVOutWrapper(v)
            with pipes(stdout=wrapper, stderr=STDOUT):
                _, cols, cost = lapjv(cost_matrix, verbose=1)
                wrapper.finish()
        except ImportError:
            _, cols, cost = lapjv(cost_matrix)

    else:
        _, cols, cost = lapjv(cost_matrix)

    cost = cost[0]

    del cost_matrix

    paired = np.array(imgs)[cols]

    white = np.ones(imgs[0].shape, np.uint8)
    white[:, :, :] = [background[2], background[1], background[0]]
github sjdv1982 / seamless / seamless / graphs / compiled_transformer / executor.py View on Github external
result_arg = ffi.new(result_arg_name+" *")
args.append(result_arg)

def run():
    error_code = module.lib.transform(*args)
    if error_code != 0:
        return error_code, None
    if result_schema["type"] == "object":
        result = unpack_result_struct(args[-1], result_schema)
    elif result_schema["type"] == "array":
        result = unpack_result_array_struct(args[-1], result_schema)
    else:
        result = args[-1][0]
    return 0, result

with wurlitzer.pipes() as (stdout, stderr):
    error_code, result = run()
sys.stderr.write(stderr.read())
sys.stdout.write(stdout.read())
ARRAYS.clear()
if error_code != 0:
    raise SeamlessStreamTransformationError("Compiled transformer returned non-zero value: {}".format(error_code))
github sjdv1982 / seamless / seamless / core / execute.py View on Github external
def execute(name, code,
      injector, module_workspace,
      identifier, namespace,
      inputs, output_name, celltype, result_queue
    ):
    assert identifier is not None
    try:
        old_stdio = sys.stdout, sys.stderr
        stdout, stderr = FakeStdStream(sys.stdout), FakeStdStream(sys.stderr)
        sys.stdout, sys.stderr = stdout, stderr
        with wurlitzer.pipes() as (stdout2, stderr2):
            result = _execute(name, code,
                injector, module_workspace,
                identifier, namespace,
                inputs, output_name, celltype, result_queue
            )

        msg_code, msg = result
        if msg_code == 2: # SeamlessTransformationError, propagate
            result_queue.put((1, msg))
        elif msg_code in (1, 10):
            std = ""
            sout = stdout.read() + stdout2.read()
            sys.stdout, sys.stderr = old_stdio
            if len(sout):
                if not len(std):
                    std = "\n"
github hanzhi713 / image-collage-maker / make_img.py View on Github external
# compute pair-wise distances
    cost_matrix = cdist(img_keys, dest_img, metric=metric)

    np_ctype = eval("np." + ctype)
    cost_matrix = np_ctype(cost_matrix)

    print("Computing optimal assignment on a {}x{} matrix...".format(
        cost_matrix.shape[0], cost_matrix.shape[1]))

    from lapjv import lapjv

    if v is not None and (platform.system() == "Linux" or platform.system() == "Darwin") and v.gui:
        try:
            from wurlitzer import pipes, STDOUT
            from wurlitzer import Wurlitzer
            Wurlitzer.flush_interval = 0.1
            wrapper = JVOutWrapper(v)
            with pipes(stdout=wrapper, stderr=STDOUT):
                _, cols, cost = lapjv(cost_matrix, verbose=1)
                wrapper.finish()
        except ImportError:
            _, cols, cost = lapjv(cost_matrix)

    else:
        _, cols, cost = lapjv(cost_matrix)

    cost = cost[0]

    print("Total assignment cost:", cost)
    print("Time taken: {}s".format((np.round(time.time() - t, 2))))

    # sometimes the cost matrix may be extremely large
github minrk / wurlitzer / wurlitzer.py View on Github external
stderr_w = stdout_w
    elif stderr == PIPE:
        stderr_r, stderr_w = os.pipe()
        stderr_w = os.fdopen(stderr_w, 'wb')
        if encoding:
            stderr_r = io.open(stderr_r, 'r', encoding=encoding)
        else:
            stderr_r = os.fdopen(stderr_r, 'rb')
        stderr_pipe = True
    else:
        stderr_r = stderr_w = stderr
    if stdout_pipe or stderr_pipe:
        capture_encoding = None
    else:
        capture_encoding = encoding
    w = Wurlitzer(stdout=stdout_w, stderr=stderr_w, encoding=capture_encoding)
    try:
        with w:
            yield stdout_r, stderr_r
    finally:
        # close pipes
        if stdout_pipe:
            stdout_w.close()
        if stderr_pipe:
            stderr_w.close()
github Xilinx / ZCU111-PYNQ / ZCU111 / packages / xrfdc / pkg / xrfdc / __init__.py View on Github external
def _safe_wrapper(name, *args, **kwargs):
    with sys_pipes():
        if not hasattr(_lib, name):
            raise RuntimeError(f"Function {name} not in library")
        if getattr(_lib, name)(*args, **kwargs):
            raise RuntimeError(f"Function {name} call failed")

wurlitzer

Capture C-level output in context managers

MIT
Latest version published 7 months ago

Package Health Score

70 / 100
Full package analysis

Similar packages