How to use the vowpalwabbit.pyvw function in vowpalwabbit

To help you get started, we’ve selected a few vowpalwabbit examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github VowpalWabbit / vowpal_wabbit / python / examples / test_search.py View on Github external
(VERB, 'ate'),
                (DET , 'a'),
                (ADJ , 'big'),
                (NOUN, 'sandwich')],
               [(DET , 'the'),
                (NOUN, 'sandwich'),
                (VERB, 'was'),
                (ADJ , 'tasty')],
               [(NOUN, 'it'),
                (VERB, 'ate'),
                (NOUN, 'it'),
                (ADJ , 'all')] ]


# initialize VW as usual, but use 'hook' as the search_task
vw = pyvw.vw("--search 4 --quiet --search_task hook --ring_size 1024")

# tell VW to construct your search task object
sequenceLabeler = vw.init_search_task(SequenceLabeler)

# train it on the above dataset ten times; the my_dataset.__iter__ feeds into _run above
print('training!', file=sys.stderr)
for i in range(10):
    sequenceLabeler.learn(my_dataset)

# now see the predictions on a test sentence
print('predicting!', file=sys.stderr)
print(sequenceLabeler.predict( [(1,w) for w in "the sandwich ate a monster".split()] ))
print('should have printed: [1, 2, 3, 1, 2]')
github hal3 / macarico / tests / test_sequence_labeler.py View on Github external
parser = argparse.ArgumentParser()
    parser.add_argument('--method', type=str, choices=['reslope', 'prep', 'mc', 'bootstrap'],
                        default='prep')
    parser.add_argument('--env', type=str, choices=[
        'gridworld', 'gridworld_stoch', 'gridworld_ep', 'cartpole', 'hex', 'blackjack', 'sl', 'dep'],
                        help='Environment to run on', default='gridworld')
    parser.add_argument('--alr', type=float, help='Actor learning rate', default=0.0005)
    parser.add_argument('--vdlr', type=float, help='Value difference learning rate', default=0.005)
    parser.add_argument('--clr', type=float, help='Critic learning rate', default=0.005)
    parser.add_argument('--clip', type=float, help='Gradient clipping argument', default=10)
    parser.add_argument('--exp', type=str, help='Exploration method', default='eps',
                        choices=['eps', 'softmax', 'bagging'])
    parser.add_argument('--exp_param', type=float, help='Parameter for exp. method', default=0.4)
    args = parser.parse_args()
#    policy = VWPolicy(actor, n_labels, lr=args.alr, exp_type=args.exp, exp_param=args.exp_param)
    vd_regressor = pyvw.vw('-l ' + str(args.vdlr), quiet=True)
    ref_critic = pyvw.vw('-l ' + str(args.clr), quiet=True)
    learner_type = 'prep'
#    learner = VwPrep(policy, actor, vd_regressor, ref_critic, learner_type)

    loss_fn = sl.HammingLoss
    # TODO what is the best value for n_epochs?
    n_epochs = 1
    warm = True
    if warm:
        macarico.util.TrainLoop(mk_env, policy, learner, optimizer, losses=[loss_fn, loss_fn, loss_fn], progress_bar=False,
                                minibatch_size=np.random.choice([1]),).train(training_data=tr, dev_data=de,
                                                                             n_epochs=n_epochs)
    # Load wsj again
    data_dir = 'bandit_data/pos/pos_wsj.mac'
    n_tr = 42000
    n_de = 0
github VowpalWabbit / vowpal_wabbit / python / examples / test_partial_example.py View on Github external
from vowpalwabbit import pyvw

vw = pyvw.vw('--audit')
full = vw.example( { 'a': ['b'], 'x': ['y'] } )
full.learn()

part = vw.example( {'a': ['b'] } )
part.learn()

part.push_features('x', ['y'])
part.learn()

part.erase_namespace(ord('x'))
part.push_features('x', ['z'])
part.learn()
github VowpalWabbit / vowpal_wabbit / python / examples / word_alignment.py View on Github external
pred = self.sch.predict(examples  = examples,
                                    my_tag    = i+1,
                                    oracle    = oracle,
                                    condition = [ (i, 'p'), (i-1, 'q') ] )

            for ex in examples: ex.finish()

            output.append( spans[pred][2] )
            for j in spans[pred][2]:
                covered[j] = True

        return output


print('training LDF')
vw = pyvw.vw("--search 0 --csoaa_ldf m --search_task hook --ring_size 1024 --quiet -q ef -q ep")
task = vw.init_search_task(WordAligner)
for p in range(10):
    task.learn(my_dataset)
print('====== test ======')
print(task.predict( ("the blue flower".split(), ([],[],[]), "la fleur bleue".split()) ))
print('should have printed [[0], [2], [1]]')
github VowpalWabbit / vowpal_wabbit / python / examples / word_alignment.py View on Github external
my_dataset2 = [
    ( "mary did not slap    the green witch".split(),
      ([0], [], [1],[2,3,4],[6],[8],  [7]),
      "maria no dio una bofetada a la bruja verde".split() ) ]
      #  0   1   2   3     4     5  6   7     8


def alignmentError(true, sys):
    t = set(true)
    s = set(sys)
    if len(t | s) == 0: return 0.
    return 1. - float(len(t & s)) / float(len(t | s))


class WordAligner(pyvw.SearchTask):
    def __init__(self, vw, sch, num_actions):
        pyvw.SearchTask.__init__(self, vw, sch, num_actions)
        sch.set_options( sch.AUTO_HAMMING_LOSS | sch.IS_LDF | sch.AUTO_CONDITION_FEATURES )

    def makeExample(self, E, F, i, j0, l):
        f  = 'Null' if j0 is None else [ F[j0+k] for k in range(l+1) ]
        ex = self.vw.example( { 'e': E[i],
                                'f': f,
                                'p': '_'.join(f),
                                'l': str(l),
                                'o': [str(i-j0), str(i-j0-l)] if j0 is not None else [] },
                              labelType = self.vw.lCostSensitive )
        lab = 'Null' if j0 is None else str(j0+l)
        ex.set_label_string(lab + ':0')
        return ex
github VowpalWabbit / vowpal_wabbit / python / examples / mini_vw.py View on Github external
def mini_vw(inputFile, numPasses, otherArgs):
    vw = pyvw.vw(otherArgs)
    for p in range(numPasses):
        print('pass', (p+1))
        h = open(inputFile, 'r')
        for l in h.readlines():
            if learnFromStrings:
                vw.learn(l)
            else:
                ex = vw.example(l)
                vw.learn(ex)
                ex.finish()

        h.close()
    vw.finish()
github VowpalWabbit / vowpal_wabbit / python / vowpalwabbit / sklearn_vw.py View on Github external
def get_vw(self):
        """Factory to create a vw instance on demand

        Returns
        -------
        pyvw.vw instance
        """
        if self.vw_ is None:
            self.vw_ = pyvw.vw(**self.params)

        return self.vw_
github creme-ml / creme / benchmarks / wrappers.py View on Github external
def __init__(self, **kwargs):
        kwargs['passes'] = 1
        self.model = pyvw.vw('--quiet', **kwargs)

vowpalwabbit

Vowpal Wabbit Python package

BSD-3-Clause
Latest version published 4 months ago

Package Health Score

86 / 100
Full package analysis

Similar packages