Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
model.X = info.split(",")[2:len(info.split(","))]
model.X = [item.replace("'", '').replace('\\', '') for item in model.X]
model.param = to_tablesample(query = "SELECT category_name, category_level::varchar, category_level_index FROM (SELECT GET_MODEL_ATTRIBUTE(USING PARAMETERS model_name = '{}', attr_name = 'integer_categories')) x UNION ALL SELECT GET_MODEL_ATTRIBUTE(USING PARAMETERS model_name = '{}', attr_name = 'varchar_categories')".format(name.replace("'", "''"), name.replace("'", "''")), cursor = cursor)
model.param.table_info = False
else:
model.X = info.split(",")[2:len(info.split(",")) - 1]
model.X = [item.replace("'", '').replace('\\', '') for item in model.X]
model.n_cluster = int(info.split(",")[-1])
model.cluster_centers = to_tablesample(query = "SELECT GET_MODEL_ATTRIBUTE(USING PARAMETERS model_name = '{}', attr_name = 'centers')".format(name.replace("'", "''")), cursor = cursor)
model.cluster_centers.table_info = False
query = "SELECT GET_MODEL_ATTRIBUTE(USING PARAMETERS model_name = '{}', attr_name = 'metrics')".format(name.replace("'", "''"))
cursor.execute(query)
result = cursor.fetchone()[0]
values = {"index": ["Between-Cluster Sum of Squares", "Total Sum of Squares", "Total Within-Cluster Sum of Squares", "Between-Cluster SS / Total SS", "converged"]}
values["value"] = [float(result.split("Between-Cluster Sum of Squares: ")[1].split("\n")[0]), float(result.split("Total Sum of Squares: ")[1].split("\n")[0]), float(result.split("Total Within-Cluster Sum of Squares: ")[1].split("\n")[0]), float(result.split("Between-Cluster Sum of Squares: ")[1].split("\n")[0]) / float(result.split("Total Sum of Squares: ")[1].split("\n")[0]), result.split("Converged: ")[1].split("\n")[0] == "True"]
model.metrics = tablesample(values, table_info = False)
if (model.type == "classifier"):
cursor.execute("SELECT DISTINCT {} FROM {} WHERE {} IS NOT NULL ORDER BY 1".format(model.y, model.input_relation, model.y))
classes = cursor.fetchall()
model.classes = [item[0] for item in classes]
return (model)
#---#
elapsed_time = time.time() - start_time
if (time_on):
print_time(elapsed_time)
result = cursor.fetchall()
columns = [column[0] for column in cursor.description]
data_columns = [[item] for item in columns]
data = [item for item in result]
for row in data:
for idx, val in enumerate(row):
data_columns[idx] += [val]
values = {}
for column in data_columns:
values[column[0]] = column[1:len(column)]
if (conn):
conn.close()
return tablesample(values = values, name = name)
#---#