How to use the tsam.timeseriesaggregation function in tsam

To help you get started, we’ve selected a few tsam examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github FZJ-IEK3-VSA / tsam / test / test_hierarchical.py View on Github external
def test_hierarchical():

    raw = pd.read_csv(os.path.join(os.path.dirname(__file__),'..','examples','testdata.csv'), index_col = 0)

    orig_raw = pd.read_csv(os.path.join(os.path.dirname(__file__),'..','examples','results','testperiods_hierarchical.csv'), index_col = [0,1])

    starttime = time.time()

    aggregation = tsam.TimeSeriesAggregation(raw, noTypicalPeriods = 8, hoursPerPeriod = 24, 
                                            clusterMethod = 'hierarchical', 
                                            extremePeriodMethod = 'new_cluster_center',
                                        addPeakMin = ['T'], addPeakMax = ['Load'] )

    typPeriods = aggregation.createTypicalPeriods()

    print('Clustering took ' + str(time.time() - starttime))


    # sort the typical days in order to avoid error assertion due to different order
    sortedDaysOrig = orig_raw.sum(axis=0,level=0).sort_values('GHI').index
    sortedDaysTest = typPeriods.sum(axis=0,level=0).sort_values('GHI').index

    # rearange their order
    orig = orig_raw[typPeriods.columns].unstack().loc[sortedDaysOrig,:].stack()
    test = typPeriods.unstack().loc[sortedDaysTest,:].stack()
github FZJ-IEK3-VSA / tsam / test / test_cluster_order.py View on Github external
def test_cluster_order():

    raw = pd.read_csv(os.path.join(os.path.dirname(__file__),'..','examples','testdata.csv'), index_col = 0)

    raw_wind = raw.loc[:, 'Wind'].to_frame()

    orig_raw_predefClusterOrder = pd.read_csv(os.path.join(os.path.dirname(__file__),'..','examples','results','testperiods_predefClusterOrder.csv'), index_col = [0,1])

    orig_raw_predefClusterOrderAndClusterCenters = pd.read_csv(os.path.join(os.path.dirname(__file__), '..', 'examples', 'results', 'testperiods_predefClusterOrderAndClusterCenters.csv'),index_col=[0, 1])

    starttime = time.time()

    aggregation_wind = tsam.TimeSeriesAggregation(raw_wind, noTypicalPeriods = 8, hoursPerPeriod = 24,
                                            clusterMethod = 'hierarchical')

    typPeriods_wind = aggregation_wind.createTypicalPeriods()

    aggregation_predefClusterOrder = tsam.TimeSeriesAggregation(raw, noTypicalPeriods=8, hoursPerPeriod=24,
                                                                clusterMethod='hierarchical',
                                                                predefClusterOrder=aggregation_wind.clusterOrder)

    typPeriods_predefClusterOrder = aggregation_predefClusterOrder.createTypicalPeriods()

    aggregation_predefClusterOrderAndClusterCenters = tsam.TimeSeriesAggregation(raw,
                                                                                 noTypicalPeriods=8, hoursPerPeriod=24,
                                                                                 clusterMethod='hierarchical',
                                                                                 predefClusterOrder=aggregation_wind.clusterOrder,
                                                                                 predefClusterCenterIndices=aggregation_wind.clusterCenterIndices)
github FZJ-IEK3-VSA / tsam / test / test_cluster_order.py View on Github external
raw = pd.read_csv(os.path.join(os.path.dirname(__file__),'..','examples','testdata.csv'), index_col = 0)

    raw_wind = raw.loc[:, 'Wind'].to_frame()

    orig_raw_predefClusterOrder = pd.read_csv(os.path.join(os.path.dirname(__file__),'..','examples','results','testperiods_predefClusterOrder.csv'), index_col = [0,1])

    orig_raw_predefClusterOrderAndClusterCenters = pd.read_csv(os.path.join(os.path.dirname(__file__), '..', 'examples', 'results', 'testperiods_predefClusterOrderAndClusterCenters.csv'),index_col=[0, 1])

    starttime = time.time()

    aggregation_wind = tsam.TimeSeriesAggregation(raw_wind, noTypicalPeriods = 8, hoursPerPeriod = 24,
                                            clusterMethod = 'hierarchical')

    typPeriods_wind = aggregation_wind.createTypicalPeriods()

    aggregation_predefClusterOrder = tsam.TimeSeriesAggregation(raw, noTypicalPeriods=8, hoursPerPeriod=24,
                                                                clusterMethod='hierarchical',
                                                                predefClusterOrder=aggregation_wind.clusterOrder)

    typPeriods_predefClusterOrder = aggregation_predefClusterOrder.createTypicalPeriods()

    aggregation_predefClusterOrderAndClusterCenters = tsam.TimeSeriesAggregation(raw,
                                                                                 noTypicalPeriods=8, hoursPerPeriod=24,
                                                                                 clusterMethod='hierarchical',
                                                                                 predefClusterOrder=aggregation_wind.clusterOrder,
                                                                                 predefClusterCenterIndices=aggregation_wind.clusterCenterIndices)

    typPeriods_predefClusterOrderAndClusterCenters = aggregation_predefClusterOrderAndClusterCenters.createTypicalPeriods()

    print('Clustering took ' + str(time.time() - starttime))
github FZJ-IEK3-VSA / tsam / test / test_preprocess.py View on Github external
def test_preprocess():

    raw = pd.read_csv(os.path.join(os.path.dirname(__file__),'..','examples','testdata.csv'), index_col = 0)

    raw_wind = raw.loc[:, 'Wind'].to_frame()

    aggregation_wind = tsam.TimeSeriesAggregation(raw_wind, noTypicalPeriods = 8, hoursPerPeriod = 24,
                                            clusterMethod = 'hierarchical')

    aggregation_wind._preProcessTimeSeries()

    test = aggregation_wind.normalizedPeriodlyProfiles

    orig = pd.read_csv(os.path.join(os.path.dirname(__file__),'..','examples','results','preprocessed_wind.csv'), index_col = [0], header = [0,1])

    np.testing.assert_array_almost_equal(test.values, orig.values,decimal=15)
github FZJ-IEK3-VSA / tsam / test / test_k_medoids.py View on Github external
def test_hierarchical():

    raw = pd.read_csv(os.path.join(os.path.dirname(__file__),'..','examples','testdata.csv'), index_col = 0)

    orig_raw = pd.read_csv(os.path.join(os.path.dirname(__file__),'..','examples','results','testperiods_kmedoids.csv'), index_col = [0,1])

    starttime = time.time()

    aggregation = tsam.TimeSeriesAggregation(raw, noTypicalPeriods = 8, hoursPerPeriod = 24*7, 
                                            clusterMethod = 'k_medoids', )

    typPeriods = aggregation.createTypicalPeriods()

    print('Clustering took ' + str(time.time() - starttime))
    
    # sort the typical days in order to avoid error assertion due to different order
    sortedDaysOrig = orig_raw.sum(axis=0,level=0).sort_values('GHI').index
    sortedDaysTest = typPeriods.sum(axis=0,level=0).sort_values('GHI').index

    # rearange their order
    orig = orig_raw[typPeriods.columns].unstack().loc[sortedDaysOrig,:].stack()
    test = typPeriods.unstack().loc[sortedDaysTest,:].stack()

    np.testing.assert_array_almost_equal(orig.values, test.values,decimal=4)
github FZJ-IEK3-VSA / tsam / examples / get_clustercenter_indices.py View on Github external
import tsam.timeseriesaggregation as tsam
import pandas as pd

raw = pd.read_csv('testdata.csv', index_col=0)

aggregation = tsam.TimeSeriesAggregation(raw, noTypicalPeriods = 8,
                                         hoursPerPeriod = 24,
                                         clusterMethod = 'hierarchical')
df = aggregation.createTypicalPeriods()
weights = aggregation.clusterPeriodNoOccur
aggregation.clusterOrder

timesteps = [i for i in range(0, len(df.index.get_level_values('TimeStep')))]

print(aggregation.clusterCenterIndices)

# get all index for every hour that in day of the clusterCenterIndices
days = [d for d in raw.index.dayofyear
        if d in aggregation.clusterCenterIndices]

# select the dates based on this
dates = raw.iloc[days].index
github oemof / oemof-tabular / src / oemof / tabular / datapackage / aggregation.py View on Github external
dfs = {
        r.name: pd.DataFrame(r.read(keyed="True"))
        .set_index("timeindex")
        .astype(float)
        for r in sequence_resources
    }
    sequences = pd.concat(dfs.values(), axis=1)

    if how == "daily":
        hoursPerPeriod = 24
    elif how == "hourly":
        hoursPerPeriod = 1
    elif how == "weekly":
        hoursPerPeriod = 24 * 7

    aggregation = tsam.TimeSeriesAggregation(
        sequences,
        noTypicalPeriods=n,
        rescaleClusterPeriods=False,
        hoursPerPeriod=hoursPerPeriod,
        clusterMethod="hierarchical",
    )

    cluster_weights = {
        aggregation.clusterCenterIndices[n]: w
        for n, w in aggregation.clusterPeriodNoOccur.items()
    }
    if how == "daily":
        temporal = pd.Series(
            {
                d: cluster_weights[d.dayofyear]
                for d in sequences.index

tsam

Time series aggregation module (tsam) to create typical periods

MIT
Latest version published 2 months ago

Package Health Score

67 / 100
Full package analysis

Similar packages