Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
'Ignoring the argument `shots`.', stacklevel=2)
if test_shots is not None:
shots = kwargs['num_samples_per_task'] - test_shots
if shots <= 0:
raise ValueError('The argument `test_shots` ({0}) is greater '
'than the number of samples per task ({1}). Either use the '
'argument `shots` instead of `num_samples_per_task`, or '
'increase the value of `num_samples_per_task`.'.format(
test_shots, kwargs['num_samples_per_task']))
else:
shots = kwargs['num_samples_per_task'] // 2
if test_shots is None:
test_shots = shots
dataset = Harmonic(num_samples_per_task=shots + test_shots, **kwargs)
dataset = ClassSplitter(dataset, shuffle=shuffle,
num_train_per_class=shots, num_test_per_class=test_shots)
dataset.seed(seed)
return dataset
'Ignoring the argument `shots`.', stacklevel=2)
if test_shots is not None:
shots = kwargs['num_samples_per_task'] - test_shots
if shots <= 0:
raise ValueError('The argument `test_shots` ({0}) is greater '
'than the number of samples per task ({1}). Either use the '
'argument `shots` instead of `num_samples_per_task`, or '
'increase the value of `num_samples_per_task`.'.format(
test_shots, kwargs['num_samples_per_task']))
else:
shots = kwargs['num_samples_per_task'] // 2
if test_shots is None:
test_shots = shots
dataset = Sinusoid(num_samples_per_task=shots + test_shots, **kwargs)
dataset = ClassSplitter(dataset, shuffle=shuffle,
num_train_per_class=shots, num_test_per_class=test_shots)
dataset.seed(seed)
return dataset
`datasets.cifar100.CIFARFS` : Meta-dataset for the CIFAR-FS dataset.
"""
if 'num_classes_per_task' in kwargs:
warnings.warn('Both arguments `ways` and `num_classes_per_task` were '
'set in the helper function for the number of classes per task. '
'Ignoring the argument `ways`.', stacklevel=2)
ways = kwargs['num_classes_per_task']
if 'transform' not in kwargs:
kwargs['transform'] = ToTensor()
if 'target_transform' not in kwargs:
kwargs['target_transform'] = Categorical(ways)
if test_shots is None:
test_shots = shots
dataset = CIFARFS(folder, num_classes_per_task=ways, **kwargs)
dataset = ClassSplitter(dataset, shuffle=shuffle,
num_train_per_class=shots, num_test_per_class=test_shots)
dataset.seed(seed)
return dataset
`datasets.TieredImagenet` : Meta-dataset for the Tiered-Imagenet dataset.
"""
if 'num_classes_per_task' in kwargs:
warnings.warn('Both arguments `ways` and `num_classes_per_task` were '
'set in the helper function for the number of classes per task. '
'Ignoring the argument `ways`.', stacklevel=2)
ways = kwargs['num_classes_per_task']
if 'transform' not in kwargs:
kwargs['transform'] = Compose([Resize(84), ToTensor()])
if 'target_transform' not in kwargs:
kwargs['target_transform'] = Categorical(ways)
if test_shots is None:
test_shots = shots
dataset = TieredImagenet(folder, num_classes_per_task=ways, **kwargs)
dataset = ClassSplitter(dataset, shuffle=shuffle,
num_train_per_class=shots, num_test_per_class=test_shots)
dataset.seed(seed)
return dataset
`datasets.MiniImagenet` : Meta-dataset for the Mini-Imagenet dataset.
"""
if 'num_classes_per_task' in kwargs:
warnings.warn('Both arguments `ways` and `num_classes_per_task` were '
'set in the helper function for the number of classes per task. '
'Ignoring the argument `ways`.', stacklevel=2)
ways = kwargs['num_classes_per_task']
if 'transform' not in kwargs:
kwargs['transform'] = Compose([Resize(84), ToTensor()])
if 'target_transform' not in kwargs:
kwargs['target_transform'] = Categorical(ways)
if test_shots is None:
test_shots = shots
dataset = MiniImagenet(folder, num_classes_per_task=ways, **kwargs)
dataset = ClassSplitter(dataset, shuffle=shuffle,
num_train_per_class=shots, num_test_per_class=test_shots)
dataset.seed(seed)
return dataset
if 'num_classes_per_task' in kwargs:
warnings.warn('Both arguments `ways` and `num_classes_per_task` were '
'set in the helper function for the number of classes per task. '
'Ignoring the argument `ways`.', stacklevel=2)
ways = kwargs['num_classes_per_task']
if 'transform' not in kwargs:
kwargs['transform'] = Compose([Resize(28), ToTensor()])
if 'target_transform' not in kwargs:
kwargs['target_transform'] = Categorical(ways)
if 'class_augmentations' not in kwargs:
kwargs['class_augmentations'] = [Rotation([90, 180, 270])]
if test_shots is None:
test_shots = shots
dataset = Omniglot(folder, num_classes_per_task=ways, **kwargs)
dataset = ClassSplitter(dataset, shuffle=shuffle,
num_train_per_class=shots, num_test_per_class=test_shots)
dataset.seed(seed)
return dataset
'set in the helper function for the number of classes per task. '
'Ignoring the argument `ways`.', stacklevel=2)
ways = kwargs['num_classes_per_task']
if 'transform' not in kwargs:
image_size = 84
kwargs['transform'] = Compose([
Resize(int(image_size * 1.5)),
CenterCrop(image_size),
ToTensor()])
if 'target_transform' not in kwargs:
kwargs['target_transform'] = Categorical(ways)
if test_shots is None:
test_shots = shots
dataset = CUB(folder, num_classes_per_task=ways, **kwargs)
dataset = ClassSplitter(dataset, shuffle=shuffle,
num_train_per_class=shots, num_test_per_class=test_shots)
dataset.seed(seed)
return dataset