Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
for ind, coor in enumerate(patch_coors):
ph, pw = coor[0], coor[1]
pred_map[ph:ph+args.patch_len, pw:pw+args.patch_len] += preds[ind]
ttl_samples += inputs.size(0)
prob_pred = np.divide(pred_map, wmap)
slide_pred = (prob_pred > 0.5).astype(np.uint8)
pred_save_path = os.path.join(result_dir, cur_slide + "_" + args.tumor_type + ".tif")
io.imsave(pred_save_path, slide_pred*255)
if args.save_org and args.tumor_type == "viable":
org_w, org_h = wsi_head.level_dimensions[0]
org_pred = transform.resize(prob_pred, (org_h, org_w))
org_pred = (org_pred > 0.5).astype(np.uint8)
org_save_path = os.path.join(org_result_dir, cur_slide[-3:] + ".tif")
imsave(org_save_path, org_pred, compress=9)
time_elapsed = time.time() - since
print('Testing takes {:.0f}m {:.2f}s'.format(time_elapsed // 60, time_elapsed % 60))
def test_unknown_axes_tags(self):
"""
This test is related to https://github.com/ilastik/ilastik/issues/1487
Here, we generate a 3D tiff file with scikit-learn and try to read it
"""
import tifffile
from distutils import version
# TODO(Dominik) remove version checking once tifffile dependency is fixed
# ilastik tiffile version >= 2000.0.0
# latest tifffile version is 0.13.0 right now
tifffile_version_ilastik_ref = version.StrictVersion("2000.0.0")
tifffile_version_ref = version.StrictVersion("0.7.0")
tifffile_version = version.StrictVersion(tifffile.__version__)
testshapes = [((10, 20), "yx"), ((10, 20, 30), "zyx"), ((10, 20, 30, 3), "zyxc"), ((5, 10, 20, 30, 3), "tzyxc")]
with tempdir() as d:
for test_shape, test_axes in testshapes:
data = numpy.random.randint(0, 256, test_shape).astype(numpy.uint8)
tiff_path = "{}/myfile_{}.tiff".format(d, test_axes)
# TODO(Dominik) remove version checking once dependencies for
# skimage are >= 0.13.0 for all flavours of ilastik
if (tifffile_version > tifffile_version_ilastik_ref) or (tifffile_version < tifffile_version_ref):
tifffile.imsave(tiff_path, data)
else:
tifffile.imsave(tiff_path, data, metadata={"axes": "QQQ"})
op = OpTiffReader(graph=Graph())
op.Filepath.setValue(tiff_path)
assert op.Output.ready()
def test_unknown_axes_tags(self):
"""
This test is related to https://github.com/ilastik/ilastik/issues/1487
Here, we generate a 3D tiff file with scikit-learn and try to read it
"""
import tifffile
from distutils import version
# TODO(Dominik) remove version checking once tifffile dependency is fixed
# ilastik tiffile version >= 2000.0.0
# latest tifffile version is 0.13.0 right now
tifffile_version_ilastik_ref = version.StrictVersion("2000.0.0")
tifffile_version_ref = version.StrictVersion("0.7.0")
tifffile_version = version.StrictVersion(tifffile.__version__)
testshapes = [((10, 20), "yx"), ((10, 20, 30), "zyx"), ((10, 20, 30, 3), "zyxc"), ((5, 10, 20, 30, 3), "tzyxc")]
with tempdir() as d:
for test_shape, test_axes in testshapes:
data = numpy.random.randint(0, 256, test_shape).astype(numpy.uint8)
tiff_path = "{}/myfile_{}.tiff".format(d, test_axes)
# TODO(Dominik) remove version checking once dependencies for
# skimage are >= 0.13.0 for all flavours of ilastik
if (tifffile_version > tifffile_version_ilastik_ref) or (tifffile_version < tifffile_version_ref):
tifffile.imsave(tiff_path, data)
else:
tifffile.imsave(tiff_path, data, metadata={"axes": "QQQ"})
op = OpTiffReader(graph=Graph())
op.Filepath.setValue(tiff_path)
assert op.Output.ready()
fft[c] = np.fft.ifft2(self.data[curT, c])
fftWin = ImgDialog(fft, title=self.title + " FFT", shifted=True)
fftWin.show()
@QtCore.pyqtSlot()
def fftShiftChecked(self, checked):
self.data.setFFTshifted(checked)
if __name__ == "__main__":
app = QtWidgets.QApplication([])
if len(sys.argv) > 1:
import tifffile as tf
path = sys.argv[1]
im = tf.imread(path)
if "fft" in sys.argv:
im = np.fft.fftshift(np.fft.fftn(np.fft.fftshift(im)))
path = os.path.basename(path)
else:
path = None
im = np.random.rand(4, 2, 10, 100, 100) * 32000
main = ImgDialog(im, title=path or "Figure")
main.show()
sys.exit(app.exec_())
test_tifffile(path, settings.verbose)
return 0
if any(i in path for i in '?*'):
path = glob.glob(path)
if not path:
print('no files match the pattern')
return 0
# TODO: handle image sequences
#if len(path) == 1:
path = path[0]
print("Reading file structure...", end=' ')
start = time.time()
try:
tif = TiffFile(path, multifile=not settings.nomultifile)
except Exception as e:
if settings.debug:
raise
else:
print("\n", e)
sys.exit(0)
print("%.3f ms" % ((time.time()-start) * 1e3))
if tif.is_ome:
settings.norgb = True
images = [(None, tif[0 if settings.page < 0 else settings.page])]
if not settings.noplot:
print("Reading image data... ", end=' ')
notnone = lambda x: next(i for i in x if i is not None)
start = time.time()
def twoColorTIFF(self):
cropName = utils.insertSuffix(self.savename, '_corrected')
with tiff.TiffWriter(self.savename, software='Tormenta') as storeFile,\
tiff.TiffWriter(cropName, software='Tormenta') as cropFile:
while self.j < self.shape[0] and self.pressed:
time.sleep(self.t_exp.magnitude)
if self.andor.n_images_acquired > self.j:
i, self.j = self.andor.new_images_index
newImages = self.andor.images16(i, self.j, self.frameShape,
1, self.n)
self.sigUpdate.emit(np.transpose(newImages[-1]))
# self.sigUpdate.emit(newImages[-1])
newData = newImages[:, ::-1]
# This is done frame by frame in order to have contiguously
# saved tiff files so they're correctly opened in ImageJ
# or in python through tifffile
continue
elif isinstance(v[0], TiffPage):
v = [i.index for i in v if i]
s.append(
("* %s: %s" % (k, str(v))).split("\n", 1)[0]
[:PRINT_LINE_LEN].rstrip())
for k, v in lists:
l = []
for i, w in enumerate(v):
l.append("* %s[%i]\n %s" % (k, i,
str(w).replace("\n", "\n ")))
s.append('\n'.join(l))
return '\n'.join(s)
class TiffTags(Record):
"""Dictionary of TiffTags with attribute access."""
def __str__(self):
"""Return string with information about all tags."""
s = []
#sortbycode = lambda a, b: cmp(a.code, b.code)
#for tag in sorted(self.values(), sortbycode):
for tag in sorted(self.values(), key=lambda x: x.code):
typecode = "%i%s" % (tag.count * int(tag.dtype[0]), tag.dtype[1])
line = "* %i %s (%s) %s" % (tag.code, tag.name, typecode,
str(tag.value).split('\n', 1)[0])
s.append(line[:PRINT_LINE_LEN].lstrip())
return '\n'.join(s)
def read_bytes(fh, byteorder, dtype, count):
"""Read tag data from file and return as byte string."""
def __str__(self):
"""Pretty print Record."""
s = []
lists = []
for k in sorted(self):
if k.startswith('_'): # does not work with byte
continue
v = self[k]
if isinstance(v, (list, tuple)) and len(v):
if isinstance(v[0], Record):
lists.append((k, v))
continue
elif isinstance(v[0], TiffPage):
v = [i.index for i in v if i]
s.append(
("* %s: %s" % (k, str(v))).split("\n", 1)[0]
[:PRINT_LINE_LEN].rstrip())
for k, v in lists:
l = []
for i, w in enumerate(v):
l.append("* %s[%i]\n %s" % (k, i,
str(w).replace("\n", "\n ")))
s.append('\n'.join(l))
return '\n'.join(s)
angle = float(sys.argv[2]) if len(sys.argv) > 2 else 32.5
dz = float(sys.argv[3]) if len(sys.argv) > 3 else 0.4
dx = 0.1
xzRatio = dx / (np.deg2rad(angle) * dz)
rotated = rotateGPU(im, angle, xzRatio)
tf.imshow(rotated, vmin=0, vmax=rotated.max() * 0.5)
plt.show()
elif (sys.argv[1] == "decon") or (sys.argv[1] == "deconv"):
im = tf.imread(
"/Users/talley/Dropbox (HMS)/CBMF/lattice_sample_data/lls_bidirectional/bidir_ch0_stack0000_488nm_0000000msec_0007232334msecAbs.tif"
)
otfpath = "/Users/talley/Dropbox (HMS)/CBMF/lattice_sample_data/lls_PSFs/488_otf.tif"
RL_init(im.shape, otfpath, dzdata=0.4)
decon = RL_decon(im, nIters=15)
tf.imshow(decon, vmin=0, vmax=decon.max() * 0.5)
plt.show()
RL_cleanup()
elif sys.argv[1] == "camcor":
from llspy import llsdir
from llspy import samples
import time
E = llsdir.LLSdir(samples.stickypix)
# from llspy.util import util
# from llspy.camera.camera import CameraParameters, CameraROI
# camparams = CameraParameters()
# camparams = camparams.get_subroi(CameraROI(E.settings.camera.roi))
# for i in sys.argv[2:]:
# p = p = os.path.abspath(i).replace('\\', '')
# if os.path.isfile(p):
# tf.imshow(deskewGPU(tf.imread(p), float(zstep)))
# plt.show()
elif sys.argv[1] == "rotate":
im = tf.imread(
"/Users/talley/Dropbox (HMS)/CBMF/lattice_sample_data/lls_registration_samp/reg_ex1/tspeck/GPUdecon/tspeck_ch0_stack0000_488nm_0000000msec_0001881189msecAbs_decon.tif"
)
angle = float(sys.argv[2]) if len(sys.argv) > 2 else 32.5
dz = float(sys.argv[3]) if len(sys.argv) > 3 else 0.4
dx = 0.1
xzRatio = dx / (np.deg2rad(angle) * dz)
rotated = rotateGPU(im, angle, xzRatio)
tf.imshow(rotated, vmin=0, vmax=rotated.max() * 0.5)
plt.show()
elif (sys.argv[1] == "decon") or (sys.argv[1] == "deconv"):
im = tf.imread(
"/Users/talley/Dropbox (HMS)/CBMF/lattice_sample_data/lls_bidirectional/bidir_ch0_stack0000_488nm_0000000msec_0007232334msecAbs.tif"
)
otfpath = "/Users/talley/Dropbox (HMS)/CBMF/lattice_sample_data/lls_PSFs/488_otf.tif"
RL_init(im.shape, otfpath, dzdata=0.4)
decon = RL_decon(im, nIters=15)
tf.imshow(decon, vmin=0, vmax=decon.max() * 0.5)
plt.show()
RL_cleanup()
elif sys.argv[1] == "camcor":
from llspy import llsdir
from llspy import samples