Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
r = int(minRadius * (2 ** (i))) # current radius
d_raw = 2 * r
d = tf.constant(d_raw, shape=[1])
d = tf.tile(d, [2]) # replicate d to 2 times in dimention 1, just used as slice
loc_k = loc[k,:] # k is bach index
# each image is first resize to biggest radius img: one_img2, then offset + loc_k - r is the adjust location
adjusted_loc = offset + loc_k - r # 2 * max_radius + loc_k - current_radius
one_img2 = tf.reshape(one_img, (one_img.get_shape()[0].value, one_img.get_shape()[1].value))
# crop image to (d x d)
zoom = tf.slice(one_img2, adjusted_loc, d) # slice start from adjusted_loc
# resize cropped image to (sensorBandwidth x sensorBandwidth)
# note that sensorBandwidth is side length for the smallest zoom (finest granularity)
zoom = tf.image.resize_bilinear(tf.reshape(zoom, (1, d_raw, d_raw, 1)), (sensorBandwidth, sensorBandwidth))
zoom = tf.reshape(zoom, (sensorBandwidth, sensorBandwidth))
imgZooms.append(zoom)
zooms.append(tf.stack(imgZooms))
zooms = tf.stack(zooms)
glimpse_images.append(zooms)
return zooms
vocab_size = 50000
embedding_dim = 8
batch_size = 2
state_size = 11
input_size = 8
# Starting interactive Session
sess = tf.InteractiveSession()
# Placeholders
# can add assert statements to ensure shared None dimensions are equal (batch_size)
seq_lens_d = tf.placeholder(tf.int32, [None, ], name="seq_lens_d")
seq_lens_q = tf.placeholder(tf.int32, [None, ], name="seq_lens_q")
input_d = tf.placeholder(tf.int32, [None, None], name="input_d")
input_q = tf.placeholder(tf.int32, [None, None], name="input_q")
input_a = tf.placeholder(tf.int32, [None, ], name="input_a")
input_m = tf.placeholder(tf.int32, [None, ], name="input_m")
n_steps = tf.placeholder(tf.int32)
# toy feed dict
feed = {
n_steps: 5,
seq_lens_d: [5,4],
seq_lens_q: [2,3],
input_d: [[20,30,40,50,60],[2,3,4,5,0]], # document
input_q: [[2,3,0],[1,2,3]], # query
input_a: [1,0], # answer
input_m: [2,3], # number of entities
}
mask_d = tf.cast(tf.sequence_mask(seq_lens_d), tf.int32)
mask_q = tf.cast(tf.sequence_mask(seq_lens_q), tf.int32)
plt.text(j, i, format(cm[i, j], fmt),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
# Modeling
graph = tf.Graph()
with graph.as_default():
tf_X = tf.placeholder(tf.int64, shape=[None, seq_max_len])
tf_y = tf.placeholder(tf.int64, shape=[None, seq_max_len])
tf_rel_label = tf.placeholder(tf.int64, shape=[None, seq_max_len])
tf_b_label = tf.placeholder(tf.int64, shape=[None, seq_max_len])
tf_word_embeddings = tf.placeholder(tf.float32, shape=[vocabulary_size, embedding_size])
tf_X_binary_mask = tf.placeholder(tf.float32, shape=[None, seq_max_len])
tf_weight_mask = tf.placeholder(tf.float32, shape=[None, seq_max_len])
tf_weight_mask_ss = tf.placeholder(tf.float32, shape=[None, seq_max_len])
tf_seq_len = tf.placeholder(tf.int64, shape=[None, ])
keep_prob = tf.placeholder(tf.float32)
ln_w = tf.Variable(tf.truncated_normal([embedding_size, nb_linear_inside], stddev=1.0 / math.sqrt(embedding_size)))
ln_b = tf.Variable(tf.zeros([nb_linear_inside]))
sent_w = tf.Variable(tf.truncated_normal([nb_lstm_inside, 8],
stddev=1.0 / math.sqrt(2 * nb_lstm_inside)))
sent_b = tf.Variable(tf.zeros([8]))
rel_w = tf.Variable(tf.truncated_normal([nb_lstm_inside, nb_label],
stddev=1.0 / math.sqrt(2 * nb_lstm_inside)))
rel_b = tf.Variable(tf.zeros([nb_label]))
def denselayer(x, w, b, weight_scale=0., activation=''):
x, sx = quantize(x)
x = tf.cast(x, dtype=tf.float32)
x = tf.matmul(x, w)
s = sx * weight_scale
x = x * s
x = tf.add(x, b)
if activation == "relu":
x = tf.nn.relu(x)
return x
size_in_transitions=params['replay_buffer_size'],
time_horizon=params['n_rollout_steps'])
ddpg = DDPG(env_spec=env.spec,
policy=policy,
qf=qf,
replay_buffer=replay_buffer,
steps_per_epoch=params['steps_per_epoch'],
policy_lr=params['policy_lr'],
qf_lr=params['qf_lr'],
target_update_tau=params['tau'],
n_train_steps=params['n_train_steps'],
discount=params['discount'],
min_buffer_size=int(1e4),
exploration_strategy=action_noise,
policy_optimizer=tf.train.AdamOptimizer,
qf_optimizer=tf.train.AdamOptimizer)
# Set up logger since we are not using run_experiment
tabular_log_file = osp.join(log_dir, 'progress.csv')
dowel_logger.add_output(dowel.StdOutput())
dowel_logger.add_output(dowel.CsvOutput(tabular_log_file))
dowel_logger.add_output(dowel.TensorBoardOutput(log_dir))
runner.setup(ddpg, env, sampler_args=dict(n_envs=12))
runner.train(n_epochs=params['n_epochs'],
batch_size=params['n_rollout_steps'])
dowel_logger.remove_all()
return tabular_log_file
def build_graph(test=False):
with tf.name_scope('imgholder'): # The placeholder is just a holder and doesn't contains the actual data.
imgholder = tf.placeholder(tf.float32,[None,256,256,3]) # The 3 is color channels
with tf.name_scope('bias_holder'):
bias_holder = tf.placeholder(tf.float32,[None,16,16,4]) # The bias (x,y,w,h) for 16*16 feature maps.
with tf.name_scope('conf_holder'):
conf_holder = tf.placeholder(tf.float32,[None,16,16,1]) # The confidence about 16*16 feature maps.
with tf.name_scope('croppedholder'):
croppedholder = tf.placeholder(tf.float32,[None,32,32,3]) # 256 is the number of feature maps
with tf.name_scope('veri_conf_holder2'):
veri_conf_holder = tf.placeholder(tf.float32, [None,1])
# with tf.name_scope('veri_bias_holder'):
# veri_bias_holder = tf.placeholder(tf.float32, [None,4]) # The veri output numbers,x,y,w,h
with tf.name_scope('mask'):
maskholder = tf.placeholder(tf.float32,[None,16,16,1])
conf, bias,feature_map = RPN(imgholder,test)
veri_conf = verify_net(croppedholder,test)
bias_loss = tf.reduce_sum(tf.reduce_mean(tf.square(bias*conf_holder - bias_holder),axis=0))
conf_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=conf,labels=conf_holder))
# veri_bias_loss = tf.reduce_sum(tf.reduce_mean(tf.square(veri_bias*veri_conf_holder - veri_bias_holder),axis=0))
def try_to_train_identity_layer(
self,
layer: fl.FlowLayer,
flow: fl.FlowData,
feed_dict_fn: Optional[Callable[[], Dict[tf.Tensor, np.ndarray]]] = None,
sess: Optional[tf.Session] = None,
post_init_fn: Optional[Callable[[tf.Session], None]] = None,
):
x, logdet, z = flow
new_flow = layer(flow, forward=True, is_training=True)
x_rec, logdet_rec, z_rec = new_flow
loss = tf.losses.mean_squared_error(x, x_rec)
opt = tf.train.MomentumOptimizer(0.1, 0.9)
opt_op = opt.minimize(loss)
sess = tf.Session() if sess is None else sess
sess.run(tf.global_variables_initializer())
if post_init_fn is not None:
post_init_fn(sess)
losses = []
for i in range(50):
if feed_dict_fn is not None:
feed_dict = feed_dict_fn()
else:
feed_dict = None
loss_np, _ = sess.run([loss, opt_op], feed_dict=feed_dict)
losses.append(loss_np)
self.assertGreater(losses[0], losses[-1])
""" param """
parser = argparse.ArgumentParser(description='')
parser.add_argument('--dataset', dest='dataset', default='market2duke', help='which dataset to use')
parser.add_argument('--crop_size', dest='crop_size', type=int, default=256, help='then crop to this size')
args = parser.parse_args()
dataset = args.dataset
crop_size = args.crop_size
""" run """
with tf.Session() as sess:
a_real = tf.placeholder(tf.float32, shape=[None, crop_size, crop_size, 3])
b_real = tf.placeholder(tf.float32, shape=[None, crop_size, crop_size, 3])
a2b = models.generator(a_real, 'a2b')
b2a = models.generator(b_real, 'b2a')
b2a2b = models.generator(b2a, 'a2b', reuse=True)
a2b2a = models.generator(a2b, 'b2a', reuse=True)
#--retore--#
saver = tf.train.Saver()
ckpt_path = utils.load_checkpoint('./checkpoints/' + dataset + '_spgan', sess, saver)
saver.restore(sess, ckpt_path)
if ckpt_path is None:
raise Exception('No checkpoint!')
else:
print('Copy variables from % s' % ckpt_path)
structure_ss = tf.multiply(structure_ss, tf.expand_dims(tf_X_binary_mask, 2))
structure_rel = tf.split(axis=0, num_or_size_splits=seq_max_len, value=structure_rel)
# Change back dimension to [batch_size, n_step, n_input]
structure_rel = tf.stack(structure_rel)
structure_rel = tf.transpose(structure_rel, [1, 0, 2])
structure_rel = tf.multiply(structure_rel, tf.expand_dims(tf_X_binary_mask, 2))
structure_b = tf.split(axis=0, num_or_size_splits=seq_max_len, value=structure_b)
# Change back dimension to [batch_size, n_step, n_input]
structure_b = tf.stack(structure_b)
structure_b = tf.transpose(structure_b, [1, 0, 2])
structure_b = tf.multiply(structure_b, tf.expand_dims(tf_X_binary_mask, 2))
cross_entropy_ss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=structure_ss, labels=y_labels))
cross_entropy_rel = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=structure_rel, labels=rel_label))
cross_entropy_b = tf.reduce_mean(tf.multiply(tf.nn.softmax_cross_entropy_with_logits(logits=structure_b, labels=b_label), tf_weight_mask))
regularization = WEIGHT_DECAY * sum(tf.nn.l2_loss(tf_var) for tf_var in tf.trainable_variables() if not ("noreg" in tf_var.name or "Bias" in tf_var.name))
prediction_ss = tf.argmax(tf.nn.softmax(structure_ss), 2)
correct_prediction_ss = tf.reduce_sum(tf.multiply(tf.cast(tf.equal(prediction_ss, tf_y), tf.float32), tf_X_binary_mask))
prediction_rel = tf.argmax(tf.nn.softmax(structure_rel), 2)
correct_prediction_rel = tf.reduce_sum(tf.multiply(tf.cast(tf.equal(prediction_rel, tf_rel_label), tf.float32), tf_X_binary_mask))
prediction_b = tf.argmax(tf.nn.softmax(structure_b), 2)
correct_prediction_b = tf.reduce_sum(tf.multiply(tf.cast(tf.equal(prediction_b, tf_b_label), tf.float32), tf_X_binary_mask))
optimizer = tf.train.AdamOptimizer(LEARNING_RATE).minimize(cross_entropy_ss + cross_entropy_rel + cross_entropy_b + regularization)
saver = tf.train.Saver()
else:
seq_length_out = config.test_output_window
# Inputs
enc_in = tf.transpose(input, [1, 0, 2])
dec_in = tf.transpose(dec_in, [1, 0, 2])
enc_in = tf.reshape(enc_in, [-1, config.input_size])
dec_in = tf.reshape(dec_in, [-1, config.input_size])
enc_in = tf.split(enc_in, seq_length_in-1, axis=0)
dec_in = tf.split(dec_in, seq_length_out, axis=0)
if config.model == 'ERD':
# Encoder
fc = [tf.layers.dense(enc_in[i], 500,activation= tf.nn.relu,reuse=tf.AUTO_REUSE, name="fc") for i in range(config.input_window_size-1)]
config.hidden_size = 1000
hidden_size = [config.hidden_size, config.hidden_size]
number_of_layers = len(hidden_size)
def lstm_cell(size):
cell = tf.contrib.rnn.LSTMCell(size)
cell = tf.nn.rnn_cell.DropoutWrapper(cell, output_keep_prob=config.keep_prob)
return cell
enc_cells = [lstm_cell(hidden_size[i]) for i in range(number_of_layers)]
enc_cell = tf.contrib.rnn.MultiRNNCell(enc_cells)
output, final_state = tf.contrib.rnn.static_rnn(enc_cell, fc, dtype=tf.float32)
enc_state = [(final_state[i][0], final_state[i][1]) for i in range(number_of_layers)]
# Decoder
dec_cell = [tf.nn.rnn_cell.LSTMCell(hidden_size[i]) for i in range(number_of_layers)]