Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
**= MODELSPATH**
- [Data for Streamlit Demo](https://drive.google.com/file/d/1nuhHDdC4mCmiB7g0fmwUSOh1jEUQyWuz/view?usp=sharing)
**= DATAPATH**
- [ML20M Dataset](https://grouplens.org/datasets/movielens/20m/)
**= ML20MPATH**
p.s. ml20m is only needed for links.csv, I couldn't include it in my streamlit data because of copyright.
This is all the data you need.
"""
)
if page == "🔨 Test Recommendation":
st.header("Test the Recommendations")
st.info("Upon the first opening the data will start loading."
"\n Unfortunately there is no progress verbose in streamlit. Look in your console.")
st.success('Data is loaded!')
models = load_models(device)
st.success('Models are loaded!')
state, action, reward, next_state, done = get_batch(device)
st.subheader('Here is a random batch sampled from testing environment:')
if st.checkbox('Print batch info'):
st.subheader('State')
st.write(state)
st.subheader('Action')
st.write(action)
st.subheader('Reward')
def write():
"""Writes content to the app"""
ast.shared.components.title_awesome("Resources")
st.sidebar.title("Resources")
tags = ast.shared.components.multiselect(
"Select Tag(s)", options=ast.database.TAGS, default=[]
)
author_all = ast.shared.models.Author(name="All", url="")
author = st.selectbox("Select Author", options=[author_all] + ast.database.AUTHORS)
if author == author_all:
author = None
show_awesome_resources_only = st.checkbox("Show Awesome Resources Only", value=True)
if not tags:
st.info(
"""Please note that **we list each resource under a most important tag only!**"""
)
resource_section = st.empty()
with st.spinner("Loading resources ..."):
markdown = resources.get_resources_markdown(
tags, author, show_awesome_resources_only
)
resource_section.markdown(markdown)
if st.sidebar.checkbox("Show Resource JSON"):
st.subheader("Source JSON")
st.write(ast.database.RESOURCES)
tags = None
def card(header, body):
lines = [card_begin_str(header), f"<p>{body}</p>", card_end_str()]
html("".join(lines))
def br(n):
html(n * "<br>")
card("This works", "I can insert text inside a card")
br(2)
html(card_begin_str("This does not work"))
st.info("I cannot insert an st.info element inside a card")
html(card_end_str())
def main():
"""A Reactive View of the KickstarterDashboard"""
kickstarter_df = get_kickstarter_df()
kickstarter_dashboard = KickstarterDashboard(kickstarter_df=kickstarter_df)
st.markdown(__doc__)
st.info(INFO)
options = get_categories()
categories_selected = st.multiselect("Select Categories", options=options)
if not categories_selected and kickstarter_dashboard.categories:
kickstarter_dashboard.categories = []
else:
kickstarter_dashboard.categories = categories_selected
st.sidebar.title("Selections")
x_range = st.sidebar.slider("Select create_at range", 2009, 2018, (2009, 2018))
y_range = st.sidebar.slider("Select usd_pledged", 0.0, 5.0, (0.0, 5.0))
filter_df = KickstarterDashboard.filter_on_categories(kickstarter_df, categories_selected)
filter_df = kickstarter_dashboard.filter_on_ranges(
filter_df, (pd.Timestamp(x_range[0], 1, 1), pd.Timestamp(x_range[1], 12, 31)), y_range
)
kickstarter_dashboard.scatter_df = filter_df
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import streamlit as st
st.info("This info message is awesome!")
nlp = spacy.load('en_blackstone_proto')
print ("model loaded!")
return nlp(text)
st.sidebar.title("Interactive spaCy visualizer")
st.sidebar.markdown(
"""
Process text with [spaCy](https://spacy.io) models and visualize named entities,
dependencies and more. Uses spaCy's built-in
[displaCy](http://spacy.io/usage/visualizers) visualizer under the hood.
"""
)
model_load_state = st.info(f"Loading model '{spacy_model}'...")
nlp = spacy.load('en_blackstone_proto')
model_load_state.empty()
text = st.text_area("Text to analyze", DEFAULT_TEXT)
doc = process_text(spacy_model, text)
if "parser" in nlp.pipe_names:
st.header("Dependency Parse & Part-of-speech tags")
st.sidebar.header("Dependency Parse")
split_sents = st.sidebar.checkbox("Split sentences", value=True)
collapse_punct = st.sidebar.checkbox("Collapse punctuation", value=True)
collapse_phrases = st.sidebar.checkbox("Collapse phrases")
compact = st.sidebar.checkbox("Compact mode")
options = {
"collapse_punct": collapse_punct,
"collapse_phrases": collapse_phrases,
def main():
st.title("NBA Roster Turnover vs Wins")
st.header("Summary")
st.info(
"""
**Roster turnover** is defined as the sum of the absolute difference between minutes played by each
player from year to year. There is a **significant negative correlation** with higher turnover and
regular season wins."""
)
st.markdown(
f"""
Source Data: [Player Minutes]({PLAYER_MINUTES_GITHUB}), [Roster Turnover]({ROSTER_TURNOVER_GITHUB}),
[Teams Data]({TEAMS_DATA_GITHUB})
"""
)
# Loading data
with st.spinner("Loading data ..."):
image = get_image()
player_minutes = load_player_minutes().copy(deep=True)
prediction = predictor.predict(vect_text)
# st.write(prediction)
elif model_choice == 'NB':
predictor = load_prediction_models("models/newsclassifier_NB_model.pkl")
prediction = predictor.predict(vect_text)
# st.write(prediction)
elif model_choice == 'DECISION_TREE':
predictor = load_prediction_models("models/newsclassifier_CART_model.pkl")
prediction = predictor.predict(vect_text)
# st.write(prediction)
final_result = get_key(prediction,prediction_labels)
st.success("News Categorized as:: {}".format(final_result))
if choice == 'NLP':
st.info("Natural Language Processing of Text")
raw_text = st.text_area("Enter News Here","Type Here")
nlp_task = ["Tokenization","Lemmatization","NER","POS Tags"]
task_choice = st.selectbox("Choose NLP Task",nlp_task)
if st.button("Analyze"):
st.info("Original Text::\n{}".format(raw_text))
docx = nlp(raw_text)
if task_choice == 'Tokenization':
result = [token.text for token in docx ]
elif task_choice == 'Lemmatization':
result = ["'Token':{},'Lemma':{}".format(token.text,token.lemma_) for token in docx]
elif task_choice == 'NER':
result = [(entity.text,entity.label_)for entity in docx.ents]
elif task_choice == 'POS Tags':
result = ["'Token':{},'POS':{},'Dependency':{}".format(word.text,word.tag_,word.dep_) for word in docx]
nlp = load_model(model_name)
print ("model loaded!")
return nlp(text)
st.sidebar.title("Interactive spaCy visualizer")
st.sidebar.markdown(
"""
Process text with [spaCy](https://spacy.io) models and visualize named entities,
dependencies and more. Uses spaCy's built-in
[displaCy](http://spacy.io/usage/visualizers) visualizer under the hood.
"""
)
spacy_model = st.sidebar.selectbox("Model name", SPACY_MODEL_NAMES)
model_load_state = st.info(f"Loading model '{spacy_model}'...")
nlp = load_model(spacy_model)
model_load_state.empty()
text = st.text_area("Text to analyze", DEFAULT_TEXT)
doc = process_text(spacy_model, text)
if "parser" in nlp.pipe_names:
st.header("Dependency Parse & Part-of-speech tags")
st.sidebar.header("Dependency Parse")
split_sents = st.sidebar.checkbox("Split sentences", value=True)
collapse_punct = st.sidebar.checkbox("Collapse punctuation", value=True)
collapse_phrases = st.sidebar.checkbox("Collapse phrases")
compact = st.sidebar.checkbox("Compact mode")
options = {
"collapse_punct": collapse_punct,
"collapse_phrases": collapse_phrases,
def process_text(model_name, text):
nlp = load_model(model_name)
return nlp(text)
st.sidebar.title("Interactive spaCy visualizer")
st.sidebar.markdown(
"""
Process text with [spaCy](https://spacy.io) models and visualize named entities,
dependencies and more. Uses spaCy's built-in
[displaCy](http://spacy.io/usage/visualizers) visualizer under the hood.
"""
)
spacy_model = st.sidebar.selectbox("Model name", SPACY_MODEL_NAMES)
model_load_state = st.info(f"Loading model '{spacy_model}'...")
nlp = load_model(spacy_model)
model_load_state.empty()
text = st.text_area("Text to analyze", DEFAULT_TEXT)
doc = process_text(spacy_model, text)
if "parser" in nlp.pipe_names:
st.header("Dependency Parse & Part-of-speech tags")
st.sidebar.header("Dependency Parse")
split_sents = st.sidebar.checkbox("Split sentences", value=True)
collapse_punct = st.sidebar.checkbox("Collapse punctuation", value=True)
collapse_phrases = st.sidebar.checkbox("Collapse phrases")
compact = st.sidebar.checkbox("Compact mode")
options = {
"collapse_punct": collapse_punct,
"collapse_phrases": collapse_phrases,