Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def test_parallel_data_set_permute():
batch_size = 5
buckets = data_io.define_parallel_buckets(100, 100, 10, 1.0)
bucket_batch_sizes = data_io.define_bucket_batch_sizes(buckets,
batch_size,
batch_by_words=False,
batch_num_devices=1,
data_target_average_len=[None] * len(buckets))
dataset = data_io.ParallelDataSet(*_get_random_bucketed_data(buckets, min_count=0, max_count=5)).fill_up(
bucket_batch_sizes)
permutations, inverse_permutations = data_io.get_permutations(dataset.get_bucket_counts())
assert len(permutations) == len(inverse_permutations) == len(dataset)
dataset_restored = dataset.permute(permutations).permute(inverse_permutations)
assert len(dataset) == len(dataset_restored)
for buck_idx in range(len(dataset)):
num_samples = dataset.source[buck_idx].shape[0]
if num_samples:
assert (dataset.source[buck_idx] == dataset_restored.source[buck_idx]).asnumpy().all()
assert (dataset.target[buck_idx] == dataset_restored.target[buck_idx]).asnumpy().all()
assert (dataset.label[buck_idx] == dataset_restored.label[buck_idx]).asnumpy().all()
else:
assert not dataset_restored.source[buck_idx]
assert not dataset_restored.target[buck_idx]
def test_sharded_parallel_sample_iter():
batch_size = 2
buckets = data_io.define_parallel_buckets(100, 100, 10, 1.0)
# The first bucket is going to be empty:
bucket_counts = [0] + [None] * (len(buckets) - 1)
bucket_batch_sizes = data_io.define_bucket_batch_sizes(buckets,
batch_size,
batch_by_words=False,
batch_num_devices=1,
data_target_average_len=[None] * len(buckets))
dataset1 = data_io.ParallelDataSet(*_get_random_bucketed_data(buckets, min_count=0, max_count=5,
bucket_counts=bucket_counts))
dataset2 = data_io.ParallelDataSet(*_get_random_bucketed_data(buckets, min_count=0, max_count=5,
bucket_counts=bucket_counts))
with TemporaryDirectory() as work_dir:
shard1_fname = os.path.join(work_dir, 'shard1')
shard2_fname = os.path.join(work_dir, 'shard2')
dataset1.save(shard1_fname)
dataset2.save(shard2_fname)
shard_fnames = [shard1_fname, shard2_fname]
it = data_io.ShardedParallelSampleIter(shard_fnames, buckets, batch_size, bucket_batch_sizes, 'replicate')
# Test 1
it.next()
expected_batch = it.next()
fname = os.path.join(work_dir, "saved_iter")
num_shards = 2
batch_size = 2
num_batches_per_bucket = 10
buckets = data_io.define_parallel_buckets(100, 100, 10, 1.0)
bucket_counts = [batch_size * num_batches_per_bucket for _ in buckets]
num_batches_per_shard = num_batches_per_bucket * len(buckets)
num_batches = num_shards * num_batches_per_shard
bucket_batch_sizes = data_io.define_bucket_batch_sizes(buckets,
batch_size,
batch_by_words=False,
batch_num_devices=1,
data_target_average_len=[None] * len(buckets))
dataset1 = data_io.ParallelDataSet(*_get_random_bucketed_data(buckets, min_count=0, max_count=5,
bucket_counts=bucket_counts))
dataset2 = data_io.ParallelDataSet(*_get_random_bucketed_data(buckets, min_count=0, max_count=5,
bucket_counts=bucket_counts))
with TemporaryDirectory() as work_dir:
shard1_fname = os.path.join(work_dir, 'shard1')
shard2_fname = os.path.join(work_dir, 'shard2')
dataset1.save(shard1_fname)
dataset2.save(shard2_fname)
shard_fnames = [shard1_fname, shard2_fname]
it = data_io.ShardedParallelSampleIter(shard_fnames, buckets, batch_size, bucket_batch_sizes,
'replicate')
num_batches_seen = 0
while it.iter_next():
it.next()
num_batches_seen += 1
assert num_batches_seen == num_batches
def test_sharded_and_parallel_iter_same_num_batches():
""" Tests that a sharded data iterator with just a single shard produces as many shards as an iterator directly
using the same dataset. """
batch_size = 2
num_batches_per_bucket = 10
buckets = data_io.define_parallel_buckets(100, 100, 10, 1.0)
bucket_counts = [batch_size * num_batches_per_bucket for _ in buckets]
num_batches = num_batches_per_bucket * len(buckets)
bucket_batch_sizes = data_io.define_bucket_batch_sizes(buckets,
batch_size,
batch_by_words=False,
batch_num_devices=1,
data_target_average_len=[None] * len(buckets))
dataset = data_io.ParallelDataSet(*_get_random_bucketed_data(buckets, min_count=0, max_count=5,
bucket_counts=bucket_counts))
with TemporaryDirectory() as work_dir:
shard_fname = os.path.join(work_dir, 'shard1')
dataset.save(shard_fname)
shard_fnames = [shard_fname]
it_sharded = data_io.ShardedParallelSampleIter(shard_fnames, buckets, batch_size, bucket_batch_sizes,
'replicate')
it_parallel = data_io.ParallelSampleIter(dataset, buckets, batch_size, bucket_batch_sizes)
num_batches_seen = 0
while it_parallel.iter_next():
assert it_sharded.iter_next()
it_parallel.next()
def test_raw_list_text_dset_loader(source_list, target_sentences, num_samples_per_bucket,
expected_source_0, expected_target_0, expected_label_0):
# Test Init object
buckets = sockeye.data_io.define_parallel_buckets(4, 4, 1, 1.0)
dset_loader = data_io.RawListTextDatasetLoader(buckets=buckets,
eos_id=10, pad_id=C.PAD_ID)
assert isinstance(dset_loader, data_io.RawListTextDatasetLoader)
assert len(dset_loader.buckets)==3
# Test Load data
pop_dset_loader = dset_loader.load(source_list, target_sentences, num_samples_per_bucket)
assert isinstance(pop_dset_loader, sockeye.data_io.ParallelDataSet)
assert len(pop_dset_loader.source)==3
assert len(pop_dset_loader.target)==3
assert len(pop_dset_loader.label)==3
np.testing.assert_equal(pop_dset_loader.source[0], expected_source_0)
np.testing.assert_almost_equal(pop_dset_loader.target[0].asnumpy(), expected_target_0)
np.testing.assert_almost_equal(pop_dset_loader.label[0].asnumpy(), expected_label_0)
if isinstance(self.source[buck_idx], np.ndarray):
source.append(self.source[buck_idx].take(np.int64(permutation.asnumpy())))
else:
source.append(self.source[buck_idx].take(permutation))
target.append(self.target[buck_idx].take(permutation))
label.append(self.label[buck_idx].take(permutation))
graph.append(self.src_graphs[buck_idx].take(permutation))
position.append(self.src_positions[buck_idx].take(permutation))
else:
source.append(self.source[buck_idx])
target.append(self.target[buck_idx])
label.append(self.label[buck_idx])
graph.append(self.src_graphs[buck_idx])
position.append(self.src_positions[buck_idx])
return ParallelDataSet(source, target, label, graph, position)
# we can try again to compute the label sequence on the fly in next().
data_label[buck_index][sample_index, :target_len] = target[1:] + [self.eos_id]
bucket_sample_index[buck_index] += 1
for i in range(len(data_source)):
data_source[i] = mx.nd.array(data_source[i], dtype=self.dtype)
data_target[i] = mx.nd.array(data_target[i], dtype=self.dtype)
data_label[i] = mx.nd.array(data_label[i], dtype=self.dtype)
if num_tokens_source > 0 and num_tokens_target > 0:
logger.info("Created bucketed parallel data set. Introduced padding: source=%.1f%% target=%.1f%%)",
num_pad_source / num_tokens_source * 100,
num_pad_target / num_tokens_target * 100)
return ParallelDataSet(data_source, data_target, data_label)
def _load_shard(self):
shard_fname = self.shards_fnames[self.shard_index]
logger.info("Loading shard %s.", shard_fname)
dataset = ParallelDataSet.load(self.shards_fnames[self.shard_index]).fill_up(self.bucket_batch_sizes,
self.fill_up,
seed=self.shard_index)
self.shard_iter = ParallelSampleIter(data=dataset,
buckets=self.buckets,
batch_size=self.batch_size,
bucket_batch_sizes=self.bucket_batch_sizes,
source_data_name=self.source_data_name,
target_data_name=self.target_data_name,
num_factors=self.num_factors)
data_source[i] = mx.nd.array(data_source[i], dtype=self.dtype)
data_target[i] = mx.nd.array(data_target[i], dtype=self.dtype)
data_label[i] = mx.nd.array(data_label[i], dtype=self.dtype)
data_src_graphs[i], global_index_list = self._convert_to_adj_matrix(self.buckets[i][0], data_src_graphs[i])
data_src_positions[i] = self._get_graph_positions(self.buckets[i][0], data_src_graphs[i], global_index_list)
data_src_graphs[i] = mx.nd.array(data_src_graphs[i], dtype=self.dtype)
data_src_positions[i] = mx.nd.array(data_src_positions[i], dtype=self.dtype)
if num_tokens_source > 0 and num_tokens_target > 0:
logger.info("Created bucketed parallel data set. Introduced padding: source=%.1f%% target=%.1f%%)",
num_pad_source / num_tokens_source * 100,
num_pad_target / num_tokens_target * 100)
return ParallelDataSet(data_source, data_target, data_label, data_src_graphs, data_src_positions)