Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def start_connected_longer_cluster():
"""Creates a cluster with a longer timeout."""
g = Cluster(
initialize_head=True,
connect=True,
head_node_args={
"num_cpus": 1,
"_internal_config": json.dumps({
"num_heartbeats_timeout": 20
})
})
yield g
# The code after the yield will run as teardown code.
ray.shutdown()
g.shutdown()
context = _context
elif isinstance(_context, dict):
if 'context' in _context:
context = _context['context']
else:
'''
we are not in MLSQL
'''
context = PythonContext([], {"pythonMode": "ray"})
context.rayContext.is_in_mlsql = False
else:
raise Exception("context is not set")
if url is not None:
import ray
ray.shutdown(exiting_interpreter=False)
ray.init(redis_address=url)
return context.rayContext
games, None let MuZero play all players turn by turn.
"""
print("\nTesting...")
ray.init()
self_play_workers = self_play.SelfPlay.remote(
copy.deepcopy(self.muzero_weights),
self.Game(self.config.seed + self.config.num_actors),
self.config,
)
test_rewards = []
for _ in range(self.config.test_episodes):
history = ray.get(
self_play_workers.play_game.remote(0, render, muzero_player)
)
test_rewards.append(sum(history.rewards))
ray.shutdown()
return test_rewards
default='2,3,5,10,20,25,50,60,100', type=str)
parser.add_argument("--model", help="Model options: {}".format(
model_names.keys()),
default='resnet50', type=str)
args = parser.parse_args()
n_workers = args.n_workers
test_type = args.test
n_data = args.n_data
model_name = args.model
use_search = args.search
search_pool = args.search_pool
if ray.is_initialized():
ray.shutdown()
# ray.init(object_store_memory=args.object_store_memory)
ray.init()
default_shape = (224, 224, 3)
try:
search_pool = list(map(int, search_pool.split(',')))
except TypeError:
raise UserWarning("Search pool arg must be int separated by commas")
if not ((model_name == 'all') or (model_name in model_names.keys())):
raise UserWarning(
"Model name not found: {}, options: {}".format(
model_name, model_names.keys()))
if model_name != 'all':
log.info("Starting experiment.")
if args.tune:
tune_run(config, args.episodes, args.root_output, args.schedule)
else:
run_ray(config, args.episodes)
# Wait until the topology is torn down completely
# The flaky Mininet stop() call necessitates this
# This is an unfortunate reality and may conflict with other ovs setups
log.info("Waiting for environment to complete...")
wait_for_ovs()
# Take control back from root
dc_utils.change_owner(args.root_output)
# Ray doesn't play nice and prevents proper shutdown sometimes
ray.shutdown()
# time.sleep(1)
# kill_ray()
log.info("Experiment has completed.")
def shutdown_worker(self):
"""Shuts down the worker."""
ray.shutdown()
def close(self):
'''
close all environments.
'''
ray.get([env.close.remote() for env in self.envs])
ray.shutdown()
results = []
for stem, paths in activation_paths.items():
output_dir = osp.join(output_root, stem)
os.makedirs(output_dir)
future = fit_tsne_helper.remote(
paths, output_dir, num_components, num_observations, perplexity, data_type
)
results.append(future)
ray.get(results) # block until all jobs have finished
utils.add_artifacts(_run, output_root, ingredient=fit_model_ex)
finally:
# Clean up temporary directory (if needed)
if tmp_dir is not None:
tmp_dir.cleanup()
ray.shutdown()
if len(dfs.keys()) == 2:
df, df2 = dfs.values()
# merge strands
df = _merge_dfs.remote(df, df2)
else:
df = dfs.values()[0]
df = make_unary_sparse(kwargs, df)
result = call_f_single(function, nparams, df, **kwargs)
results.append(result)
keys.append(c)
results = get(results)
if nb_cpu > 1:
ray.shutdown()
results = process_results(results, keys)
return results