How to use the overrides.overrides function in overrides

To help you get started, we’ve selected a few overrides examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github allenai / deep_qa / deep_qa / layers / backend / collapse_to_batch.py View on Github external
    @overrides
    def compute_mask(self, inputs, mask=None):
        # pylint: disable=unused-argument
        if mask is None:
            return None
        return self.__collapse_tensor(mask)
github AntNLP / antu / antu / io / token_indexers / dynamic_token_indexer.py View on Github external
    @overrides
    def tokens_to_indices(
            self,
            tokens: List[str],
            vocab: Vocabulary) -> Dict[str, List[int]]:
        """
        Takes a list of tokens and converts them to one or more sets of indices.
        During the indexing process, each item corresponds to an index in the
        vocabulary.

        Parameters
        ----------
        vocab : ``Vocabulary``
            ``vocab`` is used to get the index of each item.

        Returns
        -------
github XuezheMax / macow / macow / flows / actnorm.py View on Github external
    @overrides
    def backward(self, input: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        """

        Args:
            input: Tensor
                input tensor [batch, in_channels, H, W]

        Returns: out: Tensor , logdet: Tensor
            out: [batch, in_channels, H, W], the output of the flow
            logdet: [batch], the log determinant of :math:`\partial output / \partial input`

        """
        batch, channels, H, W = input.size()
        out = input - self.bias
        out = out.div(self.log_scale.exp() + 1e-8)
        logdet = self.log_scale.sum(dim=0).squeeze(1).mul(H * -W)
github allenai / deep_qa / deep_qa / layers / wrappers / output_mask.py View on Github external
    @overrides
    def compute_mask(self, inputs, mask=None):
        return None
github allenai / allennlp / allennlp / data / tokenizers / sentence_splitter.py View on Github external
    @overrides
    def split_sentences(self, text: str) -> List[str]:
        return [sent.string.strip() for sent in self.spacy(text).sents]
github allenai / deep_qa / deep_qa / models / memory_networks / memory_network.py View on Github external
    @overrides
    def _instance_type(self):
        return TextClassificationInstance
github allenai / allennlp / allennlp / state_machines / transition_functions / linking_transition_function.py View on Github external
    @overrides
    def _compute_action_probabilities(
        self,
        state: GrammarBasedState,
        hidden_state: torch.Tensor,
        attention_weights: torch.Tensor,
        predicted_action_embeddings: torch.Tensor,
    ) -> Dict[int, List[Tuple[int, Any, Any, Any, List[int]]]]:
        # In this section we take our predicted action embedding and compare it to the available
        # actions in our current state (which might be different for each group element).  For
        # computing action scores, we'll forget about doing batched / grouped computation, as it
        # adds too much complexity and doesn't speed things up, anyway, with the operations we're
        # doing here.  This means we don't need any action masks, as we'll only get the right
        # lengths for what we're computing.

        group_size = len(state.batch_indices)
        actions = state.get_valid_actions()
github epwalsh / nlp-models / nlpete / training / metrics / bleu.py View on Github external
    @overrides
    def reset(self) -> None:
        self._precision_matches = Counter()
        self._precision_totals = Counter()
        self._prediction_lengths = 0
        self._reference_lengths = 0
github allenai / allennlp-reading-comprehension / allennlp_rc / dataset_readers / qangaroo.py View on Github external
    @overrides
    def _read(self, file_path: str):
        # if `file_path` is a URL, redirect to the cache
        file_path = cached_path(file_path)

        logger.info("Reading file at %s", file_path)

        with open(file_path) as dataset_file:
            dataset = json.load(dataset_file)

        logger.info("Reading the dataset")
        for sample in dataset:

            instance = self.text_to_instance(
                sample["candidates"],
                sample["query"],
                sample["supports"],
github allenai / allennlp / allennlp / models / semantic_parsing / wikitables / wikitables_mml_semantic_parser.py View on Github external
    @overrides
    def forward(
        self,  # type: ignore
        question: Dict[str, torch.LongTensor],
        table: Dict[str, torch.LongTensor],
        world: List[WikiTablesLanguage],
        actions: List[List[ProductionRuleArray]],
        target_values: List[List[str]] = None,
        target_action_sequences: torch.LongTensor = None,
        metadata: List[Dict[str, Any]] = None,
    ) -> Dict[str, torch.Tensor]:

        """
        In this method we encode the table entities, link them to words in the question, then
        encode the question. Then we set up the initial state for the decoder, and pass that
        state off to either a DecoderTrainer, if we're training, or a BeamSearch for inference,
        if we're not.

overrides

A decorator to automatically detect mismatch when overriding a method.

Apache-2.0
Latest version published 11 months ago

Package Health Score

84 / 100
Full package analysis

Similar packages