How to use the osqp.constant function in osqp

To help you get started, we’ve selected a few osqp examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github oxfordcontrol / miosqp / miosqp / workspace.py View on Github external
def bound_and_branch(self, leaf):
        """
        Analize result from leaf solution and bound
        """

        # Update total number of OSQP ADMM iteration
        self.osqp_iter += leaf.num_iter

        # Update total time to solve OSQP problems
        self.osqp_solve_time += leaf.osqp_solve_time

        # 1) If infeasible or unbounded, then return (prune)
        if leaf.status == osqp.constant('OSQP_PRIMAL_INFEASIBLE') or \
                leaf.status == osqp.constant('OSQP_DUAL_INFEASIBLE'):
            return

        # 2) If lower bound is greater than upper bound, then return (prune)
        if leaf.lower > self.upper_glob:
            return

        # 3) If integer feasible, then
        #   - update best solution
        #   - update best upper bound
        #   - prune all leaves with lower bound greater than best upper bound
        if (self.is_int_feas(leaf.x, leaf)):
            # Update best solution so far
            self.x = leaf.x
            # Update upper bound
            self.upper_glob = leaf.lower
github oxfordcontrol / miosqp / miosqp / workspace.py View on Github external
def bound_and_branch(self, leaf):
        """
        Analize result from leaf solution and bound
        """

        # Update total number of OSQP ADMM iteration
        self.osqp_iter += leaf.num_iter

        # Update total time to solve OSQP problems
        self.osqp_solve_time += leaf.osqp_solve_time

        # 1) If infeasible or unbounded, then return (prune)
        if leaf.status == osqp.constant('OSQP_PRIMAL_INFEASIBLE') or \
                leaf.status == osqp.constant('OSQP_DUAL_INFEASIBLE'):
            return

        # 2) If lower bound is greater than upper bound, then return (prune)
        if leaf.lower > self.upper_glob:
            return

        # 3) If integer feasible, then
        #   - update best solution
        #   - update best upper bound
        #   - prune all leaves with lower bound greater than best upper bound
        if (self.is_int_feas(leaf.x, leaf)):
            # Update best solution so far
            self.x = leaf.x
            # Update upper bound
            self.upper_glob = leaf.lower
            # Prune all nodes
github oxfordcontrol / miosqp / miosqp / node.py View on Github external
# DEBUG: Problems that hit max_iter are infeasible
        # if self.status == osqp.constant('OSQP_MAX_ITER_REACHED'):
        #     self.status = osqp.constant('OSQP_PRIMAL_INFEASIBLE')

        # Store number of iterations
        self.num_iter = results.info.iter

        # Store solve time
        self.osqp_solve_time = results.info.run_time

        # Store solver solution
        self.x = results.x
        self.y = results.y

        # Enforce integer variables to be exactly within the bounds
        if self.status == osqp.constant('OSQP_SOLVED') or \
                self.status == osqp.constant('OSQP_MAX_ITER_REACHED'):
            #  import ipdb; ipdb.set_trace()
            n_int = self.data.n_int
            i_idx = self.data.i_idx
            self.x[i_idx] = \
                np.minimum(np.maximum(self.x[i_idx],
                                      self.l[-n_int:]),
                           self.u[-n_int:])
            #  if any(self.x[i_idx] < self.l[-n_int:]):
            #      import ipdb; ipdb.set_trace()
            #  if any(self.x[i_idx] > self.u[-n_int:]):
            #      import ipdb; ipdb.set_trace()

            # Update objective value of relaxed problem (lower bound)
            self.lower = self.data.compute_obj_val(self.x)
github oxfordcontrol / miosqp / miosqp / workspace.py View on Github external
def print_progress(self, leaf):
        """
        Print progress at each iteration
        """
        if self.upper_glob == np.inf:
            gap = "    --- "
        else:
            gap = "%8.2f%%" % \
                ((self.upper_glob - self.lower_glob)/abs(self.lower_glob)*100)

        if leaf.status == osqp.constant('OSQP_PRIMAL_INFEASIBLE') or \
                leaf.status == osqp.constant('OSQP_DUAL_INFEASIBLE'):
            obj = np.inf
        else:
            obj = leaf.lower

        if leaf.intinf is None:
            intinf = "  ---"
        else:
            intinf = "%5d" % leaf.intinf

        print("%4d\t%4d\t  %10.2e\t%4d\t%s\t  %10.2e\t%10.2e\t%s\t%5d" %
              (self.iter_num, len(self.leaves), obj,
               leaf.depth, intinf, self.lower_glob,
               self.upper_glob, gap, leaf.num_iter), end='')

        if leaf.status == osqp.constant('OSQP_MAX_ITER_REACHED'):
github oxfordcontrol / miosqp / miosqp / workspace.py View on Github external
leaf.status == osqp.constant('OSQP_DUAL_INFEASIBLE'):
            obj = np.inf
        else:
            obj = leaf.lower

        if leaf.intinf is None:
            intinf = "  ---"
        else:
            intinf = "%5d" % leaf.intinf

        print("%4d\t%4d\t  %10.2e\t%4d\t%s\t  %10.2e\t%10.2e\t%s\t%5d" %
              (self.iter_num, len(self.leaves), obj,
               leaf.depth, intinf, self.lower_glob,
               self.upper_glob, gap, leaf.num_iter), end='')

        if leaf.status == osqp.constant('OSQP_MAX_ITER_REACHED'):
            print("!")
        else:
            print("")
github oxfordcontrol / miosqp / miosqp / node.py View on Github external
# if self.status == osqp.constant('OSQP_MAX_ITER_REACHED'):
        #     self.status = osqp.constant('OSQP_PRIMAL_INFEASIBLE')

        # Store number of iterations
        self.num_iter = results.info.iter

        # Store solve time
        self.osqp_solve_time = results.info.run_time

        # Store solver solution
        self.x = results.x
        self.y = results.y

        # Enforce integer variables to be exactly within the bounds
        if self.status == osqp.constant('OSQP_SOLVED') or \
                self.status == osqp.constant('OSQP_MAX_ITER_REACHED'):
            #  import ipdb; ipdb.set_trace()
            n_int = self.data.n_int
            i_idx = self.data.i_idx
            self.x[i_idx] = \
                np.minimum(np.maximum(self.x[i_idx],
                                      self.l[-n_int:]),
                           self.u[-n_int:])
            #  if any(self.x[i_idx] < self.l[-n_int:]):
            #      import ipdb; ipdb.set_trace()
            #  if any(self.x[i_idx] > self.u[-n_int:]):
            #      import ipdb; ipdb.set_trace()

            # Update objective value of relaxed problem (lower bound)
            self.lower = self.data.compute_obj_val(self.x)
github oxfordcontrol / miosqp / miosqp / workspace.py View on Github external
def print_progress(self, leaf):
        """
        Print progress at each iteration
        """
        if self.upper_glob == np.inf:
            gap = "    --- "
        else:
            gap = "%8.2f%%" % \
                ((self.upper_glob - self.lower_glob)/abs(self.lower_glob)*100)

        if leaf.status == osqp.constant('OSQP_PRIMAL_INFEASIBLE') or \
                leaf.status == osqp.constant('OSQP_DUAL_INFEASIBLE'):
            obj = np.inf
        else:
            obj = leaf.lower

        if leaf.intinf is None:
            intinf = "  ---"
        else:
            intinf = "%5d" % leaf.intinf

        print("%4d\t%4d\t  %10.2e\t%4d\t%s\t  %10.2e\t%10.2e\t%s\t%5d" %
              (self.iter_num, len(self.leaves), obj,
               leaf.depth, intinf, self.lower_glob,
               self.upper_glob, gap, leaf.num_iter), end='')

        if leaf.status == osqp.constant('OSQP_MAX_ITER_REACHED'):
            print("!")
github oxfordcontrol / miosqp / miosqp / node.py View on Github external
# Number of OSQP ADMM iterations
        self.num_iter = 0

        # Time to solve the QP
        self.osqp_solve_time = 0

        # Warm-start variables which are also the relaxed solutions
        if x0 is None:
            x0 = np.zeros(self.data.n)
        if y0 is None:
            y0 = np.zeros(self.data.m + self.data.n_int)
        self.x = x0
        self.y = y0

        # Set QP solver return status
        self.status = osqp.constant('OSQP_UNSOLVED')

        # Add next variable elements
        self.nextvar_idx = None   # Index of next variable within solution x
        # Index of constraint to change for branching
        # on next variable
        self.constr_idx = None

osqp

OSQP: The Operator Splitting QP Solver

Apache-2.0
Latest version published 3 months ago

Package Health Score

74 / 100
Full package analysis