How to use the neuraxle.steps.sklearn.SKLearnWrapper function in neuraxle

To help you get started, we’ve selected a few neuraxle examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github Neuraxio / Neuraxle / testing / test_pipeline.py View on Github external
def test_pipeline_tosklearn():
    import sklearn.pipeline
    the_step = SomeStep()
    step_to_check = the_step.tosklearn()

    p = Pipeline([
        ("a", SomeStep()),
        ("b", SKLearnWrapper(sklearn.pipeline.Pipeline([
            ("a", sklearn.pipeline.Pipeline([
                ('z', step_to_check)
            ])),
            ("b", SomeStep().tosklearn()),
            ("c", SomeStep().tosklearn())
        ]), return_all_sklearn_default_params_on_get=True)),
        ("c", SomeStep())
    ])

    # assert False
    p.set_hyperparams({
        "b": {
            "a__z__learning_rate": 7,
            "b__learning_rate": 9
        }
    })
github Neuraxio / Neuraxle / testing / test_pipeline.py View on Github external
def test_pipeline_tosklearn():
    import sklearn.pipeline
    the_step = SomeStep()
    step_to_check = the_step.tosklearn()

    p = Pipeline([
        ("a", SomeStep()),
        ("b", SKLearnWrapper(sklearn.pipeline.Pipeline([
            ("a", sklearn.pipeline.Pipeline([
                ('z', step_to_check)
            ])),
            ("b", SomeStep().tosklearn()),
            ("c", SomeStep().tosklearn())
        ]), return_all_sklearn_default_params_on_get=True)),
        ("c", SomeStep())
    ])

    # assert False
    p.set_hyperparams({
        "b": {
            "a__z__learning_rate": 7,
            "b__learning_rate": 9
        }
    })
github Neuraxio / Neuraxle / examples / boston_housing_meta_optimization.py View on Github external
def main():
    boston = load_boston()
    X, y = shuffle(boston.data, boston.target, random_state=13)
    X = X.astype(np.float32)
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, shuffle=False)

    # Note that the hyperparameter spaces are defined here during the pipeline definition, but it could be already set
    # within the classes ar their definition if using custom classes, or also it could be defined after declaring the
    # pipeline using a flat dict or a nested dict.

    p = Pipeline([
        AddFeatures([
            SKLearnWrapper(
                PCA(n_components=2),
                HyperparameterSpace({"n_components": RandInt(1, 3)})
            ),
            SKLearnWrapper(
                FastICA(n_components=2),
                HyperparameterSpace({"n_components": RandInt(1, 3)})
            ),
        ]),
        ModelStacking([
            SKLearnWrapper(
                GradientBoostingRegressor(),
                HyperparameterSpace({
                    "n_estimators": RandInt(50, 600), "max_depth": RandInt(1, 10),
                    "learning_rate": LogUniform(0.07, 0.7)
                })
            ),
github Neuraxio / Neuraxle / examples / boston_housing_meta_optimization.py View on Github external
boston = load_boston()
    X, y = shuffle(boston.data, boston.target, random_state=13)
    X = X.astype(np.float32)
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, shuffle=False)

    # Note that the hyperparameter spaces are defined here during the pipeline definition, but it could be already set
    # within the classes ar their definition if using custom classes, or also it could be defined after declaring the
    # pipeline using a flat dict or a nested dict.

    p = Pipeline([
        AddFeatures([
            SKLearnWrapper(
                PCA(n_components=2),
                HyperparameterSpace({"n_components": RandInt(1, 3)})
            ),
            SKLearnWrapper(
                FastICA(n_components=2),
                HyperparameterSpace({"n_components": RandInt(1, 3)})
            ),
        ]),
        ModelStacking([
            SKLearnWrapper(
                GradientBoostingRegressor(),
                HyperparameterSpace({
                    "n_estimators": RandInt(50, 600), "max_depth": RandInt(1, 10),
                    "learning_rate": LogUniform(0.07, 0.7)
                })
            ),
            SKLearnWrapper(
                KMeans(),
                HyperparameterSpace({"n_clusters": RandInt(5, 10)})
            ),
github Neuraxio / Neuraxle / examples / boston_housing_meta_optimization.py View on Github external
]),
        ModelStacking([
            SKLearnWrapper(
                GradientBoostingRegressor(),
                HyperparameterSpace({
                    "n_estimators": RandInt(50, 600), "max_depth": RandInt(1, 10),
                    "learning_rate": LogUniform(0.07, 0.7)
                })
            ),
            SKLearnWrapper(
                KMeans(),
                HyperparameterSpace({"n_clusters": RandInt(5, 10)})
            ),
        ],
            joiner=NumpyTranspose(),
            judge=SKLearnWrapper(
                Ridge(),
                HyperparameterSpace({"alpha": LogUniform(0.7, 1.4), "fit_intercept": Boolean()})
            ),
        )
    ])
    print("Meta-fitting on train:")
    p = p.meta_fit(X_train, y_train, metastep=RandomSearch(
        n_iter=10,
        higher_score_is_better=True,
        validation_technique=KFoldCrossValidationWrapper(scoring_function=r2_score, k_fold=10)
    ))
    # Here is an alternative way to do it, more "pipeliney":
    # p = RandomSearch(
    #     p,
    #     n_iter=15,
    #     higher_score_is_better=True,
github Neuraxio / Neuraxle / examples / boston_housing_meta_optimization.py View on Github external
# within the classes ar their definition if using custom classes, or also it could be defined after declaring the
    # pipeline using a flat dict or a nested dict.

    p = Pipeline([
        AddFeatures([
            SKLearnWrapper(
                PCA(n_components=2),
                HyperparameterSpace({"n_components": RandInt(1, 3)})
            ),
            SKLearnWrapper(
                FastICA(n_components=2),
                HyperparameterSpace({"n_components": RandInt(1, 3)})
            ),
        ]),
        ModelStacking([
            SKLearnWrapper(
                GradientBoostingRegressor(),
                HyperparameterSpace({
                    "n_estimators": RandInt(50, 600), "max_depth": RandInt(1, 10),
                    "learning_rate": LogUniform(0.07, 0.7)
                })
            ),
            SKLearnWrapper(
                KMeans(),
                HyperparameterSpace({"n_clusters": RandInt(5, 10)})
            ),
        ],
            joiner=NumpyTranspose(),
            judge=SKLearnWrapper(
                Ridge(),
                HyperparameterSpace({"alpha": LogUniform(0.7, 1.4), "fit_intercept": Boolean()})
            ),
github Neuraxio / Neuraxle / examples / hyperparams.py View on Github external
def main():
    p = Pipeline([
        ('step1', MultiplyByN()),
        ('step2', MultiplyByN()),
        Pipeline([
            Identity(),
            Identity(),
            SKLearnWrapper(PCA(n_components=4))
        ])
    ])

    p.set_hyperparams_space(HyperparameterSpace({
        'step1__multiply_by': RandInt(42, 50),
        'step2__multiply_by': RandInt(-10, 0),
        'Pipeline__SKLearnWrapper_PCA__n_components': RandInt(2, 3)
    }))

    samples = p.get_hyperparams_space().rvs()
    p.set_hyperparams(samples)

    samples = p.get_hyperparams()
    assert 42 <= samples['step1__multiply_by'] <= 50
    assert -10 <= samples['step2__multiply_by'] <= 0
    assert samples['Pipeline__SKLearnWrapper_PCA__n_components'] in [2, 3]