Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
# Authors: Alexandre Gramfort
#
# License: BSD (3-clause)
print __doc__
import numpy as np
import mne
from mne import fiff
from mne.time_frequency import induced_power
from mne.datasets import sample
###############################################################################
# Set parameters
data_path = sample.data_path('..')
raw_fname = data_path + '/MEG/sample/sample_audvis_raw.fif'
event_fname = data_path + '/MEG/sample/sample_audvis_raw-eve.fif'
event_id = 1
tmin = -0.2
tmax = 0.5
# Setup for reading the raw data
raw = fiff.Raw(raw_fname)
events = mne.read_events(event_fname)
include = []
exclude = raw.info['bads'] + ['MEG 2443', 'EEG 053'] # bads + 2 more
# picks MEG gradiometers
picks = fiff.pick_types(raw.info, meg='grad', eeg=False,
stim=False, include=include, exclude=exclude)
# Alexandre Gramfort
#
# License: BSD (3-clause)
import numpy as np
from nitime.analysis import MTCoherenceAnalyzer
from nitime.viz import drawmatrix_channels
import matplotlib.pyplot as plt
import mne
from mne import io
from mne.datasets import sample
print(__doc__)
data_path = sample.data_path()
###############################################################################
# Set parameters
raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif'
event_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw-eve.fif'
event_id, tmin, tmax = 1, -0.2, 0.5
# Setup for reading the raw data
raw = io.Raw(raw_fname)
events = mne.read_events(event_fname)
# Set up pick list: EEG + MEG - bad channels (modify to your needs)
raw.info['bads'] += ['MEG 2443', 'EEG 053']
picks = mne.pick_types(raw.info, meg='grad', eeg=False, stim=False, eog=True,
exclude='bads')
data in sensor space. Here the classifier is applied to a single time point.
"""
# Authors: Alexandre Gramfort
# Romain Trachel
#
# License: BSD (3-clause)
import numpy as np
import mne
from mne import io
from mne.datasets import sample
print(__doc__)
data_path = sample.data_path()
###############################################################################
# Set parameters
raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif'
event_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw-eve.fif'
tmin, tmax = -0.2, 0.5
event_id = dict(aud_l=1, vis_l=3)
# Setup for reading the raw data
raw = io.Raw(raw_fname, preload=True)
raw.filter(2, None, method='iir') # replace baselining with high-pass
events = mne.read_events(event_fname)
# Set up pick list: EEG + MEG - bad channels (modify to your needs)
raw.info['bads'] += ['MEG 2443', 'EEG 053'] # bads + 2 more
picks = mne.pick_types(raw.info, meg='grad', eeg=False, stim=False, eog=False,
#
# License: BSD (3-clause)
print __doc__
import numpy as np
import pylab as pl
import mne
from mne.fiff import Raw
from mne.artifacts.ica import ICA
from mne.viz import plot_ica_panel
from mne.datasets import sample
data_path = sample.data_path('..')
raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif'
raw = Raw(raw_fname, preload=True)
picks = mne.fiff.pick_types(raw.info, meg=True, eeg=False, eog=False,
stim=False, exclude=raw.info['bads'])
# 1 minute exposure should be sufficient for artifact detection
# however rejection pefromance significantly improves when using
# the entire data range
start, stop = raw.time_to_index(100, 160)
# setup ica seed
ica = ICA(noise_cov=None, n_components=25, random_state=0)
print ica
# Authors: Alexandre Gramfort
# Manuel Moussallam
#
# License: BSD (3-clause)
import numpy as np
import mne
from mne import pick_types_evoked, pick_types_forward
from mne.datasets import sample
from mne.time_frequency import iir_filter_raw, morlet
from mne.simulation import generate_sparse_stc, generate_evoked
###############################################################################
# Load real data as templates
data_path= sample.data_path()
raw = mne.io.Raw(data_path + '/MEG/sample/sample_audvis_raw.fif')
proj = mne.read_proj(data_path + '/MEG/sample/sample_audvis_ecg_proj.fif')
raw.info['projs'] += proj
raw.info['bads'] = ['MEG 2443', 'EEG 053'] # mark bad channels
fwd_fname = data_path + '/MEG/sample/sample_audvis-meg-eeg-oct-6-fwd.fif'
ave_fname = data_path + '/MEG/sample/sample_audvis-no-filter-ave.fif'
cov_fname = data_path + '/MEG/sample/sample_audvis-cov.fif'
fwd = mne.read_forward_solution(fwd_fname, force_fixed=True, surf_ori=True)
fwd = pick_types_forward(fwd, meg=True, eeg=True, exclude=raw.info['bads'])
cov = mne.read_cov(cov_fname)
evoked_template = mne.read_evokeds(ave_fname, condition=0, baseline=None)
evoked_template = pick_types_evoked(evoked_template, meg=True, eeg=True,
import subprocess
import time
import numpy as np
import matplotlib.pyplot as plt
import mne
from mne.realtime import FieldTripClient
from mne.time_frequency import psd_welch
from mne.utils import running_subprocess
print(__doc__)
# user should provide info and list of bad channels because
# FieldTrip header object does not provide them
data_path = mne.datasets.sample.data_path()
info = mne.io.read_info(op.join(data_path, 'MEG', 'sample',
'sample_audvis_raw.fif'))
bads = ['MEG 2443', 'EEG 053']
fig, ax = plt.subplots(1)
speedup = 10
command = ["neuromag2ft", "--file",
"{}/MEG/sample/sample_audvis_raw.fif".format(data_path),
"--speed", str(speedup)]
with running_subprocess(command, after='kill',
stdout=subprocess.PIPE, stderr=subprocess.PIPE):
with FieldTripClient(host='localhost', port=1972,
tmax=10, wait_max=5, info=info) as rt_client:
# select gradiometers
import os.path as op
import numpy as np
import mne
import matplotlib.pyplot as plt
from mne.datasets import sample
from mne import setup_volume_source_space, setup_source_space
from mne import make_forward_solution
from mne.io import read_raw_fif
from mne.minimum_norm import make_inverse_operator, apply_inverse_epochs
from mne.connectivity import spectral_connectivity
from mne.viz import circular_layout, plot_connectivity_circle
# Set directories
data_path = sample.data_path()
subject = 'sample'
data_dir = op.join(data_path, 'MEG', subject)
subjects_dir = op.join(data_path, 'subjects')
bem_dir = op.join(subjects_dir, subject, 'bem')
# Set file names
fname_aseg = op.join(subjects_dir, subject, 'mri', 'aseg.mgz')
fname_model = op.join(bem_dir, '%s-5120-bem.fif' % subject)
fname_bem = op.join(bem_dir, '%s-5120-bem-sol.fif' % subject)
fname_raw = data_dir + '/sample_audvis_filt-0-40_raw.fif'
fname_trans = data_dir + '/sample_audvis_raw-trans.fif'
fname_cov = data_dir + '/ernoise-cov.fif'
fname_event = data_dir + '/sample_audvis_filt-0-40_raw-eve.fif'
#
# License: BSD (3-clause)
import os.path as op
import numpy as np
import mne
from mne.datasets import sample
print(__doc__)
# For this example, we will be using the information of the sample subject.
# This will download the data if it not already on your machine. We also set
# the subjects directory so we don't need to give it to functions.
data_path = sample.data_path()
subjects_dir = op.join(data_path, 'subjects')
subject = 'sample'
# First, we get an info structure from the test subject.
evoked_fname = op.join(data_path, 'MEG', subject, 'sample_audvis-ave.fif')
info = mne.io.read_info(evoked_fname)
tstep = 1. / info['sfreq']
# To simulate sources, we also need a source space. It can be obtained from the
# forward solution of the sample subject.
fwd_fname = op.join(data_path, 'MEG', subject,
'sample_audvis-meg-eeg-oct-6-fwd.fif')
fwd = mne.read_forward_solution(fwd_fname)
src = fwd['src']
# To select a region to activate, we use the caudal middle frontal to grow
L2-MNE vs dSPM). It shows that combining MEG with EEG reduces the
point-spread function and increases the spatial resolution of source imaging,
especially for deeper sources.
"""
# Author: Olaf Hauk
#
# License: BSD (3-clause)
import mne
from mne.datasets import sample
from mne.minimum_norm.resolution_matrix import make_resolution_matrix
from mne.minimum_norm.spatial_resolution import resolution_metrics
print(__doc__)
data_path = sample.data_path()
subjects_dir = data_path + '/subjects/'
fname_fwd_emeg = data_path + '/MEG/sample/sample_audvis-meg-eeg-oct-6-fwd.fif'
fname_cov = data_path + '/MEG/sample/sample_audvis-cov.fif'
fname_evo = data_path + '/MEG/sample/sample_audvis-ave.fif'
# read forward solution with EEG and MEG
forward_emeg = mne.read_forward_solution(fname_fwd_emeg)
# forward operator with fixed source orientations
forward_emeg = mne.convert_forward_solution(forward_emeg, surf_ori=True,
force_fixed=True)
# create a forward solution with MEG only
forward_meg = mne.pick_types_forward(forward_emeg, meg=True, eeg=False)
# noise covariance matrix
noise_cov = mne.read_cov(fname_cov)
SSP application.
"""
# Authors: Denis Engemann
# Christian Brodbeck
# Alexandre Gramfort
#
# License: BSD (3-clause)
import numpy as np
import mne
from mne import io
from mne.datasets import sample
print(__doc__)
data_path = sample.data_path()
###############################################################################
# Set parameters
raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif'
event_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw-eve.fif'
ecg_fname = data_path + '/MEG/sample/sample_audvis_ecg_proj.fif'
event_id, tmin, tmax = 1, -0.2, 0.5
# Setup for reading the raw data
raw = io.Raw(raw_fname)
events = mne.read_events(event_fname)
# delete EEG projections (we know it's the last one)
raw.del_proj(-1)
# add ECG projs for magnetometers
for p in mne.read_proj(ecg_fname):