Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def voc_eval_with_return(result_file,
dataset,
iou_thr=0.5,
print_summary=True,
only_ap=True):
det_results = mmcv.load(result_file)
gt_bboxes = []
gt_labels = []
gt_ignore = []
for i in range(len(dataset)):
ann = dataset.get_ann_info(i)
bboxes = ann['bboxes']
labels = ann['labels']
if 'bboxes_ignore' in ann:
ignore = np.concatenate([
np.zeros(bboxes.shape[0], dtype=np.bool),
np.ones(ann['bboxes_ignore'].shape[0], dtype=np.bool)
])
gt_ignore.append(ignore)
bboxes = np.vstack([bboxes, ann['bboxes_ignore']])
labels = np.concatenate([labels, ann['labels_ignore']])
gt_bboxes.append(bboxes)
# json load/dump with a file-like object
with tempfile.NamedTemporaryFile(mode, delete=False) as f:
tmp_filename = f.name
mmcv.dump(test_obj, f, file_format=file_format)
assert osp.isfile(tmp_filename)
with open(tmp_filename, mode) as f:
load_obj = mmcv.load(f, file_format=file_format)
assert load_obj == test_obj
os.remove(tmp_filename)
# automatically inference the file format from the given filename
tmp_filename = osp.join(tempfile.gettempdir(),
'mmcv_test_dump.' + file_format)
mmcv.dump(test_obj, tmp_filename)
assert osp.isfile(tmp_filename)
load_obj = mmcv.load(tmp_filename)
assert load_obj == test_obj
os.remove(tmp_filename)
def voc_eval(result_file, dataset, iou_thr=0.5):
det_results = mmcv.load(result_file)
gt_bboxes = []
gt_labels = []
gt_ignore = []
for i in range(len(dataset)):
ann = dataset.get_ann_info(i)
bboxes = ann['bboxes']
labels = ann['labels']
if 'bboxes_ignore' in ann:
ignore = np.concatenate([
np.zeros(bboxes.shape[0], dtype=np.bool),
np.ones(ann['bboxes_ignore'].shape[0], dtype=np.bool)
])
gt_ignore.append(ignore)
bboxes = np.vstack([bboxes, ann['bboxes_ignore']])
labels = np.concatenate([labels, ann['labels_ignore']])
gt_bboxes.append(bboxes)
def main():
args = parse_args()
cfg = mmcv.Config.fromfile(args.config)
dataset = obj_from_dict(cfg.data.test, datasets, dict(test_mode=True))
output_list = []
for out in args.outputs:
output_list.append(mmcv.load(out))
if args.score_weights:
weights = np.array(args.score_weights) / sum(args.score_weights)
else:
weights = [1. / len(output_list) for _ in output_list]
def merge_scores(idx):
def merge_part(arrs, index, weights):
if arrs[0][index] is not None:
return np.sum([a[index] * w for a, w in zip(arrs, weights)],
axis=0)
else:
return None
results = [output[idx] for output in output_list]
rel_props = output_list[0][idx][0]
def fast_eval_recall(results,
coco,
max_dets,
iou_thrs=np.arange(0.5, 0.96, 0.05)):
if mmcv.is_str(results):
assert results.endswith('.pkl')
results = mmcv.load(results)
elif not isinstance(results, list):
raise TypeError(
'results must be a list of numpy arrays or a filename, not {}'.
format(type(results)))
gt_bboxes = []
img_ids = coco.getImgIds()
for i in range(len(img_ids)):
ann_ids = coco.getAnnIds(imgIds=img_ids[i])
ann_info = coco.loadAnns(ann_ids)
if len(ann_info) == 0:
gt_bboxes.append(np.zeros((0, 4)))
continue
bboxes = []
for ann in ann_info:
if ann.get('ignore', False) or ann['iscrowd']:
metrics = [
'AP', 'AP50', 'AP75', 'APs', 'APm', 'APl', 'AR1', 'AR10', 'AR100',
'ARs', 'ARm', 'ARl'
]
elif isinstance(metric, list):
metrics = metric
else:
metrics = [metric]
for metric_name in metrics:
assert metric_name in [
'AP', 'AP50', 'AP75', 'APs', 'APm', 'APl', 'AR1', 'AR10', 'AR100',
'ARs', 'ARm', 'ARl'
]
eval_output = mmcv.load(filename)
num_distortions = len(list(eval_output.keys()))
results = np.zeros((num_distortions, 6, len(metrics)), dtype='float32')
for corr_i, distortion in enumerate(eval_output):
for severity in eval_output[distortion]:
for metric_j, metric_name in enumerate(metrics):
mAP = eval_output[distortion][severity][task][metric_name]
results[corr_i, severity, metric_j] = mAP
P = results[0, 0, :]
if aggregate == 'benchmark':
mPC = np.mean(results[:15, 1:, :], axis=(0, 1))
else:
mPC = np.mean(results[:, 1:, :], axis=(0, 1))
rPC = mPC / P
def load_annotations(self, ann_file):
return mmcv.load(ann_file)