Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def parse_fn(sequence_example):
"""Parses a Kinetics example."""
context_features = {
ms.get_example_id_key(): ms.get_example_id_default_parser(),
ms.get_clip_label_string_key(): tf.FixedLenFeature((), tf.string),
ms.get_clip_label_index_key(): tf.FixedLenFeature((), tf.int64),
}
sequence_features = {
ms.get_image_encoded_key(): ms.get_image_encoded_default_parser(),
ms.get_forward_flow_encoded_key():
ms.get_forward_flow_encoded_default_parser(),
}
parsed_context, parsed_sequence = tf.io.parse_single_sequence_example(
sequence_example, context_features, sequence_features)
target = tf.one_hot(parsed_context[ms.get_clip_label_index_key()], 700)
images = tf.image.convert_image_dtype(
tf.map_fn(tf.image.decode_jpeg,
parsed_sequence[ms.get_image_encoded_key()],
back_prop=False,
dtype=tf.uint8), tf.float32)
num_frames = tf.shape(images)[0]
flow = tf.image.convert_image_dtype(
ms.get_segment_end_index_key(): (
ms.get_segment_end_index_default_parser()),
ms.get_segment_label_index_key(): (
ms.get_segment_label_index_default_parser()),
ms.get_segment_label_string_key(): (
ms.get_segment_label_string_default_parser()),
ms.get_segment_start_timestamp_key(): (
ms.get_segment_start_timestamp_default_parser()),
ms.get_segment_end_timestamp_key(): (
ms.get_segment_end_timestamp_default_parser()),
ms.get_image_frame_rate_key(): (
ms.get_image_frame_rate_default_parser()),
}
sequence_features = {
ms.get_image_encoded_key(): ms.get_image_encoded_default_parser()
}
parsed_context, parsed_sequence = tf.io.parse_single_sequence_example(
sequence_example, context_features, sequence_features)
sequence_length = tf.shape(parsed_sequence[ms.get_image_encoded_key()])[0]
num_segments = tf.shape(
parsed_context[ms.get_segment_label_index_key()])[0]
# segments matrix and targets for training.
segments_matrix, indicator = one_hot_segments(
tf.sparse_tensor_to_dense(
parsed_context[ms.get_segment_start_index_key()]),
tf.sparse_tensor_to_dense(
parsed_context[ms.get_segment_end_index_key()]),
sequence_length)
classification_target = timepoint_classification_target(