Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def test_cqt_note(C):
plt.figure()
librosa.display.specshow(C, y_axis='cqt_note')
return plt.gcf()
def display(self):
import librosa.display
import matplotlib.pyplot as plt
librosa.display.specshow(
self.matrix,
y_axis='time',
x_axis='time',
sr=self.sample_rate / (N_FFT / 2048))
plt.colorbar()
plt.set_cmap("hot_r")
plt.show()
def visual(title, spectrogram):
plt.figure(figsize=(8, 4))
librosa.display.specshow(
librosa.power_to_db(spectrogram, ref=np.max), y_axis='mel', fmax=8000, x_axis='time')
plt.colorbar(format='%+10.0f dB')
plt.title(title)
plt.tight_layout()
plt.show()
d, sr = audio_read.audio_read(filename, sr=analyzer.target_sr, channels=1)
sgram = np.abs(stft.stft(d, n_fft=analyzer.n_fft,
hop_length=analyzer.n_hop,
window=np.hanning(analyzer.n_fft + 2)[1:-1]))
sgram = 20.0 * np.log10(np.maximum(sgram, np.max(sgram) / 1e6))
sgram = sgram - np.mean(sgram)
# High-pass filter onset emphasis
# [:-1,] discards top bin (nyquist) of sgram so bins fit in 8 bits
# spectrogram enhancement
if self.illustrate_hpf:
HPF_POLE = 0.98
sgram = np.array([scipy.signal.lfilter([1, -1],
[1, -HPF_POLE], s_row)
for s_row in sgram])[:-1, ]
sgram = sgram - np.max(sgram)
librosa.display.specshow(sgram, sr=sr, hop_length=analyzer.n_hop,
y_axis='linear', x_axis='time',
cmap='gray_r', vmin=-80.0, vmax=0)
# Do the match?
q_hashes = analyzer.wavfile2hashes(filename)
# Run query, get back the hashes for match zero
results, matchhashes = self.match_hashes(ht, q_hashes, hashesfor=0)
if self.sort_by_time:
results = sorted(results, key=lambda x: -x[2])
# Convert the hashes to landmarks
lms = audfprint_analyze.hashes2landmarks(q_hashes)
mlms = audfprint_analyze.hashes2landmarks(matchhashes)
# Overplot on the spectrogram
time_scale = analyzer.n_hop / float(sr)
freq_scale = float(sr)/analyzer.n_fft
plt.plot(time_scale * np.array([[x[0], x[0] + x[3]] for x in lms]).T,
freq_scale * np.array([[x[1], x[2]] for x in lms]).T,
def plot_log_power_specgram(sound_names,raw_sounds):
i = 1
fig = plt.figure(figsize=(25,60), dpi = 900)
for n,f in zip(sound_names,raw_sounds):
plt.subplot(10,1,i)
D = librosa.logamplitude(np.abs(librosa.stft(f))**2, ref_power=np.max)
librosa.display.specshow(D,x_axis='time' ,y_axis='log')
plt.title(n.title())
i += 1
plt.suptitle('Figure 3: Log power spectrogram',x=0.5, y=0.915,fontsize=18)
plt.show()
def visualization_spectrogram(mel_spectrogram, title):
"""visualizing result of specAugment
# Arguments:
mel_spectrogram(ndarray): mel_spectrogram to visualize.
title(String): plot figure's title
"""
# Show mel-spectrogram using librosa's specshow.
plt.figure(figsize=(10, 4))
librosa.display.specshow(librosa.power_to_db(mel_spectrogram[0, :, :], ref=np.max), y_axis='mel', fmax=8000,
x_axis='time')
# plt.colorbar(format='%+2.0f dB')
plt.title(title)
plt.tight_layout()
plt.show()
def drawgendata_atomic():
I = 1
N = 2
genspec = out_g.data.numpy().transpose()[:, :200]
target = tar[0].numpy().transpose()[:, :200]
#genspec = out_g[].data.numpy().transpose()
#target = tar.permute(0,2,1).contiguous().view(-1, L2).numpy().transpose()
for i in range(I):
plt.subplot(N, I, i+1)
lrd.specshow(genspec, y_axis='log', x_axis='time')
plt.subplot(N, I, i+2)
lrd.specshow(target, y_axis='log', x_axis='time')
# Calculating MEL spectrogram and MFCC.
db_pow = np.abs(
librosa.stft(y=y, n_fft=n_fft, hop_length=hop_length, win_length=win_length)) ** 2
s_mel = librosa.feature.melspectrogram(S=db_pow, sr=sr, hop_length=hop_length,
fmax=f_max, fmin=f_min, n_mels=n_mels)
s_mel = librosa.power_to_db(s_mel, ref=np.max)
s_mfcc = librosa.feature.mfcc(S=s_mel, sr=sr, n_mfcc=n_mfcc)
# STFT (Short-time Fourier Transform)
# https://librosa.github.io/librosa/generated/librosa.core.stft.html
plt.figure(figsize=(12, 10))
db = librosa.amplitude_to_db(librosa.magphase(librosa.stft(y))[0], ref=np.max)
plt.subplot(3, 2, 1)
display.specshow(db, sr=sr, x_axis='time', y_axis='linear', hop_length=hop_length)
plt.colorbar(format='%+2.0f dB')
plt.title('Linear-frequency power spectrogram')
plt.subplot(3, 2, 2)
display.specshow(db, sr=sr, x_axis='time', y_axis='log', hop_length=hop_length)
plt.colorbar(format='%+2.0f dB')
plt.title('Log-frequency power spectrogram')
plt.subplot(3, 2, 3)
display.specshow(s_mfcc, sr=sr, x_axis='time', y_axis='linear', hop_length=hop_length)
plt.colorbar(format='%+2.0f dB')
plt.title('MFCC spectrogram')
# # CQT (Constant-T Transform)
# # https://librosa.github.io/librosa/generated/librosa.core.cqt.html
cqt = librosa.amplitude_to_db(librosa.magphase(librosa.cqt(y, sr=sr))[0], ref=np.max)
#genspec = out_g[].data.numpy().transpose()
#target = tar.permute(0,2,1).contiguous().view(-1, L2).numpy().transpose()
for i in range(I):
plt.subplot(N, I, i+1)
plt.imshow(genspec)
plt.subplot(N, I, I+i+1)
plt.imshow(target)
plt.subplot(N, I, I+i+2)
lrd.specshow(genspec, y_axis='log', x_axis='time')
plt.subplot(N, I, I+i+3)
lrd.specshow(target, y_axis='log', x_axis='time')
plt.subplot(N, I, I+i+4)
lrd.specshow(feat, y_axis='log', x_axis='time')
def _plot_partial_utterance(self, partial_utterance):
figure = Figure()
canvas = FigureCanvas(figure)
# Load the partial utterance"s frames and waveform
utterance, frames, frames_range = partial_utterance
wave_fpath = utterance.wave_fpath
wave = audio.load(wave_fpath)
wave = audio.preprocess_wave(wave)
wave_range = np.array(frames_range) * sampling_rate * (mel_window_step / 1000)
wave = wave[int(wave_range[0]):int(wave_range[1])]
# Plot the spectrogram and the waveform
ax = figure.add_subplot(211)
librosa.display.specshow(
librosa.power_to_db(frames.transpose(), ref=np.max),
hop_length=int(sampling_rate * 0.01),
y_axis="mel",
x_axis="time",
sr=sampling_rate,
ax=ax
)
ax.get_xaxis().set_visible(False)
ax = figure.add_subplot(212, sharex=ax)
librosa.display.waveplot(
wave,
sr=sampling_rate,
ax=ax
)
figure.tight_layout()
canvas.draw()