How to use the jwst.dq_init.DQInitStep function in jwst

To help you get started, we’ve selected a few jwst examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github spacetelescope / jwql / jwql / instrument_monitors / common_monitors / bias_monitor.py View on Github external
Returns
        -------
        output_filename : str
            The full path to the calibrated file
        """

        output_filename = filename.replace('_uncal', '').replace('.fits', '_superbias_refpix.fits')

        if not os.path.isfile(output_filename):
            # Run the group_scale and dq_init steps on the input file
            if group_scale:
                model = GroupScaleStep.call(filename)
                model = DQInitStep.call(model)
            else:
                model = DQInitStep.call(filename)

            # Run the saturation and superbias steps
            model = SaturationStep.call(model)
            model = SuperBiasStep.call(model)

            # Run the refpix step and save the output
            model = RefPixStep.call(model, odd_even_rows=odd_even_rows, odd_even_columns=odd_even_columns, use_side_ref_pixels=use_side_ref_pixels)
            model.save(output_filename)
            set_permissions(output_filename)
        else:
            logging.info('\t{} already exists'.format(output_filename))

        return output_filename
github spacetelescope / jwql / jwql / instrument_monitors / common_monitors / bias_monitor.py View on Github external
Option to rescale pixel values to correct for instances where
            on-board frame averaging did not result in the proper values

        Returns
        -------
        output_filename : str
            The full path to the calibrated file
        """

        output_filename = filename.replace('_uncal', '').replace('.fits', '_superbias_refpix.fits')

        if not os.path.isfile(output_filename):
            # Run the group_scale and dq_init steps on the input file
            if group_scale:
                model = GroupScaleStep.call(filename)
                model = DQInitStep.call(model)
            else:
                model = DQInitStep.call(filename)

            # Run the saturation and superbias steps
            model = SaturationStep.call(model)
            model = SuperBiasStep.call(model)

            # Run the refpix step and save the output
            model = RefPixStep.call(model, odd_even_rows=odd_even_rows, odd_even_columns=odd_even_columns, use_side_ref_pixels=use_side_ref_pixels)
            model.save(output_filename)
            set_permissions(output_filename)
        else:
            logging.info('\t{} already exists'.format(output_filename))

        return output_filename