Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def run(n_jobs=1, n_epochs=10):
# Exp def
redundancies = [25]
global_exp = dict(n_components=100, alpha=1,
l1_ratio=0,
pen_l1_ratio=.9,
learning_rate=0.9,
Dx_agg='average',
G_agg='average',
AB_agg='full')
ref_batch_size = 200
exps = [dict(batch_size=int(ref_batch_size),
reduction=reduction)
for reduction in np.linspace(5, 5, 1)]
mem = Memory(cachedir=expanduser('~/cache'))
face = misc.face(gray=True)
# Convert from uint8 representation with values between 0 and 255 to
# a floating point representation with values between 0 and 1.
face = face / 255
height, width = face.shape
# Distort the right half of the image
print('Distorting image...')
distorted = face.copy()
# distorted[:, width // 2:] += 0.075 * np.random.randn(height, width // 2)
# Extract all reference patches from the left half of the image
print('Extracting reference patches...')
t0 = time()
import numpy as np
from joblib import Memory
from nilearn.input_data import NiftiMasker
from numpy.linalg import lstsq
from os.path import expanduser, join
from cogspaces.datasets.dictionaries import fetch_atlas_modl
from cogspaces.datasets.utils import fetch_mask, get_output_dir
modl_atlas = fetch_atlas_modl()
mask = fetch_mask()['hcp']
dict_512 = modl_atlas['components512']
dict_128 = modl_atlas['components128']
mem = Memory(cachedir=expanduser('~/cache'))
masker = NiftiMasker(mask_img=mask, memory=mem).fit()
dict_512 = masker.transform(dict_512)
keep = np.load('keep.npy')
dict_128 = masker.transform(dict_128)
dict_512 = dict_512[keep]
loadings, _, _, _ = lstsq(dict_512.T, dict_128.T)
loadings = loadings.T
loadings_ = np.zeros((128, 512))
loadings_[:, keep] = loadings
loadings = loadings_
output_dir = get_output_dir()
np.save(join(modl_atlas['data_dir'], 'loadings_128_gm_masked.npy'), loadings)
import os, sys
from tempfile import mkdtemp
import subprocess
pdb2pqr_src = os.path.join(os.path.dirname(subprocess.check_output(["which", "pdb2pqr"])), "src")
sys.path.append(pdb2pqr_src)
from psize import Psize
from joblib import Memory
from molmimic.util import silence_stdout, silence_stderr
cachedir = mkdtemp()
memory = Memory(cachedir=cachedir, verbose=0)
@memory.cache
def run_apbs(pqr_file):
"""Run APBS. Calculates correct size using Psize and defualt from Chimera
"""
file_prefix = os.path.splitext(pqr_file)[0]
input_file = "{}.apbs_input".format(file_prefix)
output_prefix = "{}.apbs_output".format(file_prefix)
ps = Psize()
ps.runPsize(pqr_file)
cglen = "{:.2f} {:.2f} {:.2f}".format(*ps.getCoarseGridDims())
fglen = "{:.2f} {:.2f} {:.2f}".format(*ps.getFineGridDims())
dime = "{:d} {:d} {:d}".format(*ps.getFineGridPoints())
with open(input_file, "w") as f:
def load_data(source, scale, gray):
return load_images(source, scale=scale,
gray=gray, memory=Memory(cachedir='None'))
-------
returns nifit image object
"""
if isinstance(threeD_img_filenames, str):
return nibabel.load(threeD_img_filenames)
if output_dir is None:
output_dir = tempfile.mkdtemp()
# prepare for smart caching
merge_cache_dir = os.path.join(output_dir, "merge")
if not os.path.exists(merge_cache_dir):
os.makedirs(merge_cache_dir)
merge_mem = joblib.Memory(cachedir=merge_cache_dir, verbose=5)
# merging proper
fourD_img = merge_mem.cache(nibabel.concat_images)(threeD_img_filenames,
check_affines=False
)
# sanity
if len(fourD_img.shape) == 5:
fourD_img = nibabel.Nifti1Image(
fourD_img.get_data()[..., ..., ..., 0, ...],
fourD_img.get_affine())
# save image to disk
if not output_filename is None:
merge_mem.cache(nibabel.save)(fourD_img, output_filename)
results = [data_processing_mean(data, col) for col in range(data.shape[1])]
stop = time.time()
print('\nSequential processing')
print('Elapsed time for the entire processing: {:.2f} s'
.format(stop - start))
###############################################################################
# ``costly_compute`` is expensive to compute and it is used as an intermediate
# step in ``data_processing_mean``. Therefore, it is interesting to store the
# intermediate results from ``costly_compute`` using :class:`joblib.Memory`.
from joblib import Memory
location = './cachedir'
memory = Memory(location, verbose=0)
costly_compute_cached = memory.cache(costly_compute)
###############################################################################
# Now, we define ``data_processing_mean_using_cache`` which benefits from the
# cache by calling ``costly_compute_cached``
def data_processing_mean_using_cache(data, column):
"""Compute the mean of a column."""
return costly_compute_cached(data, column).mean()
###############################################################################
# Then, we execute the same processing in parallel and caching the intermediate
# results.
import time
import random
import requests
import numpy as np
from joblib import Memory
from BeautifulSoup import BeautifulSoup
from mne.externals.tempita import Template
from mne.commands.utils import get_optparser
# cache to avoid making too many calls to Google Scholar
cachedir = 'cachedir'
if not os.path.exists(cachedir):
os.mkdir(cachedir)
mem = Memory(cachedir=cachedir, verbose=2)
UA = ('Mozilla/5.0 (X11; U; FreeBSD i386; en-US; rv:1.9.2.9) '
'Gecko/20100913 Firefox/3.6.9')
# ##### Templates for citations #####
html = (u""":orphan:
.. _cited:
Publications by users
=====================
Papers citing MNE (%d) as extracted from Google Scholar (on %s).
""")
def _niigz2nii(self):
"""
Convert .nii.gz to .nii (crucial for SPM).
"""
if self.scratch is None:
self.scratch = self.output_dir
if self.caching:
cache_dir = os.path.join(self.scratch, 'cache_dir')
mem = Memory(cache_dir, verbose=100)
else:
mem = Memory(None, verbose=0)
self._sanitize_session_output_dirs()
self._sanitize_session_scratch_dirs()
if None not in [self.func, self.n_sessions,
self.session_scratch_dirs]:
self.func = [mem.cache(do_niigz2nii)(
self.func[sess], output_dir=self.session_scratch_dirs[sess])
for sess in range(self.n_sessions)]
if self.anat is not None:
self.anat = mem.cache(do_niigz2nii)(
self.anat, output_dir=self.anat_scratch_dir)
def load_data(datadir, trainset, testset, valid_size, output_size, embed_discrete_features=False, max_distinct_values=None, cache_read_only=False):
if cache_read_only:
dest = '/output/cache'
shutil.copytree(datadir, dest)
datadir = dest
memory = Memory(cachedir=os.path.join(datadir, 'cache'))
@memory.cache(ignore=['datadir'])
def _cached_light_load_data(datadir, trainset, testset, valid_size, embed_discrete_features, max_distinct_values):
features = ['vendor_id', 'passenger_count', 'pickup_latitude', 'pickup_longitude', 'dropoff_latitude', 'dropoff_longitude']
df_all = pd.concat((pd.read_csv(os.path.join(datadir, trainset)), pd.read_csv(os.path.join(datadir, testset))))
df_all['pickup_datetime'] = df_all['pickup_datetime'].apply(pd.Timestamp)
df_all['dropoff_datetime'] = df_all['dropoff_datetime'].apply(pd.Timestamp)
df_all['trip_duration_log'] = np.log(df_all['trip_duration'] + 1)
def _add_feature(name, value):
features.append(name)
df_all[name] = value
_, indices = np.unique(df_all['id'], return_inverse=True)
_add_feature('id_idx', indices)
# Date time features
#!/usr/bin/env python
import time
import numpy as np
from .utils import kmeans, orthonormalize_rows, random_rotation
from joblib import Memory
_memory = Memory('.', verbose=0)
# ================================================================ PQ
@_memory.cache
def learn_pq(X, ncentroids, nsubvects, subvect_len, max_kmeans_iters=16):
codebooks = np.empty((ncentroids, nsubvects, subvect_len))
assignments = np.empty((X.shape[0], nsubvects), dtype=np.int)
# print "codebooks shape: ", codebooks.shape
for i in range(nsubvects):
start_col = i * subvect_len
end_col = start_col + subvect_len
X_in = X[:, start_col:end_col]
centroids, labels = kmeans(X_in, ncentroids, max_iter=max_kmeans_iters)