Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
disabled=False,
)
if button_g.folder.value == True and button_g.suffix.value == True:
ui = widgets.HBox([csv_choices.drop, button_s, button_f])
elif button_g.folder.value == False and button_g.suffix.value == False:
ui = widgets.HBox([button_f])
elif button_g.folder.value == True and button_g.suffix.value == False:
ui = widgets.HBox([button_s, button_f])
elif button_g.folder.value == False and button_g.suffix.value == True:
ui = widgets.HBox([csv_choices.drop, button_f])
display(ui)
display(button_c)
out = widgets.Output()
display(out)
def on_button_s(b):
csv_folder_choice()
button_s.on_click(on_button_s)
def on_button_f(b):
df_choice()
button_f.on_click(on_button_f)
def on_button_c(b):
if button_g.folder.value == True and button_g.suffix.value == True:
print(csv_folder_choice.path)
csv_choices.folder_csv = (csv_folder_choice.path.rsplit('/', 1)[1])
print(f'folder: {csv_choices.folder_csv}\n')
def aug_choice():
"""Helper for whether augmentations are choosen or not"""
view_button = widgets.Button(description='View')
display(view_button)
view_out = widgets.Output()
display(view_out)
def on_view_button(b):
with view_out:
clear_output()
if aug_dash.aug.value == 'No':
code_test()
if aug_dash.aug.value == 'Yes':
aug_paras()
view_button.on_click(on_view_button)
training.cl=widgets.FloatSlider(min=1,max=64,step=1,value=1, continuous_update=False, layout=layout, style=style_green, description="Cycle Length")
training.lr = widgets.ToggleButtons(
options=['1e-6', '1e-5', '1e-4', '1e-3', '1e-2', '1e-1'],
description='Learning Rate:',
disabled=False,
button_style='info', # 'success', 'info', 'warning', 'danger' or ''
style=style,
value='1e-2',
tooltips=['Choose a suitable learning rate'],
)
display(training.cl, training.lr)
display(button)
out = widgets.Output()
display(out)
def on_button_clicked(b):
with out:
clear_output()
lr_work()
print('>> Training....''\n''Learning Rate: ', lr_work.info)
dashboard_one.datain.value, dashboard_one.norma.value, dashboard_one.archi.value, dashboard_one.pretrain_check.value,
dashboard_one.f.value, dashboard_one.m.value, dashboard_two.doflip.value, dashboard_two.dovert.value,
dashboard_two.two.value, dashboard_two.three.value, dashboard_two.seven.value, dashboard_two.four.value, dashboard_two.five.value,
dashboard_two.six.value, dashboard_one.norma.value,metrics_list(mets_list)
metrics_list(mets_list)
batch_val = int(dashboard_one.f.value) # batch size
image_val = int(dashboard_one.m.value) # image size
def interactive_output(f, controls, process_controls=lambda x: x):
"""Connect widget controls to a function.
This function does not generate a user interface for the widgets (unlike `interact`).
This enables customisation of the widget user interface layout.
The user interface layout must be defined and displayed manually.
"""
out = Output()
def observer(change):
show_inline_matplotlib_plots()
with out:
clear_output(wait=True)
f(**unpack_controls(controls, process_controls))
show_inline_matplotlib_plots()
for k, w in controls.items():
w.observe(observer, 'value')
show_inline_matplotlib_plots()
observer(None)
return out
def version():
import fastai
import os
import tensorflow as tf
import torch
print ('>> Vision_UI_Colab Last Update: 07/04/2020 \n\n>> System info \n')
button = widgets.Button(description='System Info')
display(button)
out = widgets.Output()
display(out)
def on_button_clicked_info(b):
with out:
clear_output()
RED = '\033[31m'
BLUE = '\033[94m'
GREEN = '\033[92m'
BOLD = '\033[1m'
ITALIC = '\033[3m'
RESET = '\033[0m'
import fastai; print(BOLD + BLUE + "fastai Version: " + RESET + ITALIC + str(fastai.__version__))
import fastprogress; print(BOLD + BLUE + "fastprogress Version: " + RESET + ITALIC + str(fastprogress.__version__))
import sys; print(BOLD + BLUE + "python Version: " + RESET + ITALIC + str(sys.version))
import torchvision; print(BOLD + BLUE + "torchvision: " + RESET + ITALIC + str(torchvision.__version__))
ipython = get_ipython()
ipython.magic("matplotlib ipympl")
from ipympl.backend_nbagg import FigureCanvasNbAgg, FigureManagerNbAgg
self.fig_map = Figure(figsize=(6, 6))
self.fig_time = Figure(figsize=(6, 4))
self.canvas_map = FigureCanvasNbAgg(self.fig_map)
self.canvas_time = FigureCanvasNbAgg(self.fig_time)
self.manager_map = FigureManagerNbAgg(self.canvas_map, 0)
self.manager_time = FigureManagerNbAgg(self.canvas_time, 0)
layout = {"width": "590px", "height": "800px", "border": "none"}
self.output = Output(layout=layout)
self._traffic = traffic
self.t_view = traffic.sort_values("timestamp")
self.trajectories: Dict[str, List[Artist]] = defaultdict(list)
self.create_map(projection)
self.projection = Dropdown(options=["EuroPP", "Lambert93", "Mercator"])
self.projection.observe(self.on_projection_change)
self.identifier_input = Text(description="Callsign/ID")
self.identifier_input.observe(self.on_id_input)
self.identifier_select = SelectMultiple(
options=sorted(self._traffic.callsigns), # type: ignore
value=[],
def __init__(self, beakerX=False):
self._data = _DataSelector()
self._measures = _MeasureSelector()
self._repo_info = widgets.SelectMultiple(
options=[k.value for k in RepoInfoKey], value=['category', 'name', 'commit_date', 'version'], layout=widgets.Layout(width='200px', height='250px')
)
self._output = widgets.Output(layout=widgets.Layout(
width='1000px', height='450px', overflow_y='auto', overflow_x='auto'))
self._button_update = widgets.Button(description='update')
self._button_update.on_click(self.get_measures)
arrow_cyl_mesh = pjs.Mesh(geometry=pjs.SphereGeometry(radius=0.01), material=pjs.MeshLambertMaterial())
arrow_head_mesh = pjs.Mesh(geometry=pjs.SphereGeometry(radius=0.001), material=pjs.MeshLambertMaterial())
scene_things = [my_object_mesh, my_object_wireframe_mesh, select_point_mesh, arrow_cyl_mesh, arrow_head_mesh,
camera, pjs.AmbientLight(color='#888888')]
if self.draw_grids:
grids, space = self._get_grids(vertices)
scene_things.append(grids)
scene = pjs.Scene(children=scene_things, background=BACKGROUND_COLOR)
click_picker = pjs.Picker(controlling=my_object_mesh, event='dblclick')
out = Output()
top_msg = HTML()
def on_dblclick(change):
if change['name'] == 'point':
try:
point = np.array(change['new'])
face = click_picker.faceIndex
face_points = rendered_obj.face_verts[face]
face_vecs = face_points - np.roll(face_points, 1, axis=0)
edge_lens = np.sqrt((face_vecs**2).sum(axis=1))
point_vecs = face_points - point[np.newaxis, :]
point_dists = (point_vecs**2).sum(axis=1)
min_point = np.argmin(point_dists)
v1s = point_vecs.copy()
v2s = np.roll(v1s, -1, axis=0)
def model_button():
button_m = widgets.Button(description='Model')
print('>> View Model information (model_summary, model[0], model[1])''\n\n''>> For xresnet: Pretrained needs to be set to FALSE')
display(button_m)
out_two = widgets.Output()
display(out_two)
def on_button_clicked_train(b):
with out_two:
clear_output()
print('Your pretrained setting: ', dashboard_one.pretrain_check.value)
model_summary()
button_m.on_click(on_button_clicked_train)
def detailed_map(backend):
"""Widget for displaying detailed noise map.
Args:
backend (IBMQBackend | FakeBackend): The backend.
Returns:
GridBox: Widget holding noise map images.
"""
error_widget = widgets.Output(layout=widgets.Layout(display='flex-inline',
align_items='center'))
with error_widget:
display(plot_error_map(backend, figsize=(11, 9), show_title=False))
return error_widget