Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def test_SimulatedAnnealingOptimizer():
from hyperactive import SimulatedAnnealingOptimizer
opt0 = SimulatedAnnealingOptimizer(
search_config, n_iter_0, random_state=random_state, verbosity=0, cv=cv, n_jobs=1
)
opt0.fit(X, y)
opt1 = SimulatedAnnealingOptimizer(
search_config,
n_iter_1,
random_state=random_state,
verbosity=0,
cv=cv,
n_jobs=n_jobs,
)
opt1.fit(X, y)
assert opt0.score_best < opt1.score_best
def test_SimulatedAnnealingOptimizer():
from hyperactive import SimulatedAnnealingOptimizer
opt0 = SimulatedAnnealingOptimizer(
search_config, n_iter_0, random_state=random_state, verbosity=0, cv=cv, n_jobs=1
)
opt0.fit(X, y)
opt1 = SimulatedAnnealingOptimizer(
search_config,
n_iter_1,
random_state=random_state,
verbosity=0,
cv=cv,
n_jobs=n_jobs,
)
opt1.fit(X, y)
assert opt0.score_best < opt1.score_best
RandomAnnealingOptimizer,
SimulatedAnnealingOptimizer,
StochasticTunnelingOptimizer,
ParallelTemperingOptimizer,
ParticleSwarmOptimizer,
EvolutionStrategyOptimizer,
BayesianOptimizer,
)
_ = HillClimbingOptimizer(search_config, 1)
_ = StochasticHillClimbingOptimizer(search_config, 1)
_ = TabuOptimizer(search_config, 1)
_ = RandomSearchOptimizer(search_config, 1)
_ = RandomRestartHillClimbingOptimizer(search_config, 1)
_ = RandomAnnealingOptimizer(search_config, 1)
_ = SimulatedAnnealingOptimizer(search_config, 1)
_ = StochasticTunnelingOptimizer(search_config, 1)
_ = ParallelTemperingOptimizer(search_config, 1)
_ = ParticleSwarmOptimizer(search_config, 1)
_ = EvolutionStrategyOptimizer(search_config, 1)
_ = BayesianOptimizer(search_config, 1)
"keras.applications.MobileNet.1": {
"weights": ["imagenet"],
"input_shape": [(32, 32, 3)],
"include_top": [False],
},
"keras.layers.Flatten.2": {},
"keras.layers.Dense.3": {
"units": range(5, 15),
"activation": ["relu"],
"kernel_initializer": ["uniform"],
},
"keras.layers.Dense.4": {"units": [10], "activation": ["sigmoid"]},
}
opt = SimulatedAnnealingOptimizer(search_config, n_iter=3, warm_start=False)
# search best hyperparameter for given data
opt.fit(X_train, y_train)
# predict from test data
prediction = opt.predict(X_test)
# calculate score
score = opt.score(X_test, y_test)
"keras.layers.MaxPooling2D.4": {"pool_size": [(2, 2)]},
"keras.layers.Conv2D.5": {
"filters": [32],
"kernel_size": [3],
"activation": ["relu"],
"input_shape": [(28, 28, 1)],
},
"keras.layers.MaxPooling2D.6": {"pool_size": [(2, 2)]},
"keras.layers.Flatten.7": {},
"keras.layers.Dense.8": {"units": [50], "activation": ["softmax"]},
"keras.layers.Dropout.9": {"rate": [0.4]},
"keras.layers.Dense.10": {"units": [10], "activation": ["softmax"]},
}
opt = SimulatedAnnealingOptimizer(search_config, n_iter=3, warm_start=start_point)
# search best hyperparameter for given data
opt.fit(X_train, y_train)
# predict from test data
prediction = opt.predict(X_test)
# calculate accuracy score
score = opt.score(X_test, y_test)
"min_samples_split": range(2, 21),
"min_samples_leaf": range(2, 21),
}
}
start_point = {
"sklearn.ensemble.RandomForestClassifier.0": {
"n_estimators": [30],
"max_depth": [6],
"criterion": ["entropy"],
"min_samples_split": [12],
"min_samples_leaf": [16],
}
}
opt = SimulatedAnnealingOptimizer(
search_config, n_iter=100, n_jobs=4, warm_start=start_point, verbosity=0
)
# search best hyperparameter for given data
opt.fit(X_train, y_train)
# predict from test data
prediction = opt.predict(X_test)
# calculate accuracy score
score = opt.score(X_test, y_test)