How to use the holoviews.element.Image function in holoviews

To help you get started, we’ve selected a few holoviews examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github holoviz / holoviews / tests / core / testdynamic.py View on Github external
def test_dynamic_operation_init_stream_params(self):
        img = Image(sine_array(0,5))
        stream = Stream.define('TestStream', bin_range=None)()
        histogram(img, bin_range=(0, 1), streams=[stream], dynamic=True)
        self.assertEqual(stream.bin_range, (0, 1))
github holoviz / holoviews / tests / core / testdynamic.py View on Github external
def callback(x, y):
            return Image(np.array([[0, 1], [2, 3]])) + Text(0, 0, 'Test')
        stream = PointerXY()
github holoviz / holoviews / tests / core / data / testxarrayinterface.py View on Github external
def test_select_on_transposed_dataarray(self):
        x = np.linspace(-3, 7, 53)
        y = np.linspace(-5, 8, 89)
        z = np.exp(-1*(x**2 + y[:, np.newaxis]**2))
        array = xr.DataArray(z, coords=[y, x], dims=['x', 'y'])
        img = Image(array)[1:3]
        self.assertEqual(img['z'], Image(array.sel(x=slice(1, 3)))['z'])
github holoviz / holoviews / tests / plotting / plotly / testplot.py View on Github external
def test_layout_instantiate_subplots(self):
        layout = (Curve(range(10)) + Curve(range(10)) + Image(np.random.rand(10,10)) +
                  Curve(range(10)) + Curve(range(10)))
        plot = plotly_renderer.get_plot(layout)
        positions = [(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (1, 3)]
        self.assertEqual(sorted(plot.subplots.keys()), positions)
github holoviz / holoviews / tests / core / testdynamic.py View on Github external
        fn = lambda i: Image(sine_array(0,i))
        dmap=DynamicMap(fn, kdims=[Dimension('dim', range=(0,10))])
github holoviz / holoviews / tests / element / teststatselements.py View on Github external
def test_distribution_from_image(self):
        dist = Distribution(Image(np.arange(5)*np.arange(5)[:, np.newaxis]), 'z')
        self.assertEqual(dist.range(0), (0, 16))
github holoviz / holoviews / tests / core / testdynamic.py View on Github external
        fn = lambda i: Image(sine_array(0,i))
        dmap=DynamicMap(fn, kdims=[Dimension('dim', range=(0,10))])
github holoviz / geoviews / geoviews / element / geo.py View on Github external
class VectorField(_Element, HvVectorField):
    """
    A VectorField contains is a collection of vectors where each
    vector has an associated position. The vectors should be specified
    by defining an angle in radians and a magnitude.
    """

    group = param.String(default='VectorField', constant=True)

    vdims = param.List(default=[Dimension('Angle', cyclic=True, range=(0,2*np.pi)),
                                Dimension('Magnitude')], bounds=(1, None))



class LineContours(_Element, HvImage):
    """
    Contours represents a 2D array of some quantity with
    some associated coordinates, which may be discretized
    into one or more line contours.
    """

    vdims = param.List(default=[Dimension('z')], bounds=(1, 1))

    group = param.String(default='LineContours')


class FilledContours(LineContours):
    """
    Contours represents a 2D array of some quantity with
    some associated coordinates, which may be discretized
    into one or more filled contours.
github holoviz / holoviews / holoviews / operation / datashader.py View on Github external
Specifies the smallest allowed sampling interval along the x axis.""")

    y_sampling = param.Number(default=None, doc="""
        Specifies the smallest allowed sampling interval along the y axis.""")

    target = param.ClassSelector(class_=Dataset, doc="""
        A target Dataset which defines the desired x_range, y_range,
        width and height.
    """)

    streams = param.List(default=[PlotSize, RangeXY], doc="""
        List of streams that are applied if dynamic=True, allowing
        for dynamic interaction with the plot.""")

    element_type = param.ClassSelector(class_=(Dataset,), instantiate=False,
                                        is_instance=False, default=Image,
                                        doc="""
        The type of the returned Elements, must be a 2D Dataset type.""")

    precompute = param.Boolean(default=False, doc="""
        Whether to apply precomputing operations. Precomputing can
        speed up resampling operations by avoiding unnecessary
        recomputation if the supplied element does not change between
        calls. The cost of enabling this option is that the memory
        used to represent this internal state is not freed between
        calls.""")

    @bothmethod
    def instance(self_or_cls,**params):
        filtered = {k:v for k,v in params.items() if k in self_or_cls.param}
        inst = super(ResamplingOperation, self_or_cls).instance(**filtered)
        inst._precomputed = {}
github holoviz / holoviews / holoviews / operation / datashader.py View on Github external
if element._plot_id in self._precomputed:
            precomputed = self._precomputed[element._plot_id]
        elif wireframe:
            precomputed = self._precompute_wireframe(element, agg)
        else:
            precomputed = self._precompute(element, agg)

        params = dict(get_param_values(element), kdims=[x, y],
                      datatype=['xarray'], vdims=[vdim])

        if width == 0 or height == 0:
            if width == 0: params['xdensity'] = 1
            if height == 0: params['ydensity'] = 1
            bounds = (x_range[0], y_range[0], x_range[1], y_range[1])
            return Image((xs, ys, np.zeros((height, width))), bounds=bounds, **params)

        if wireframe:
            segments = precomputed['segments']
        else:
            simplices = precomputed['simplices']
            pts = precomputed['vertices']
            mesh = precomputed['mesh']
        if precompute:
            self._precomputed = {element._plot_id: precomputed}

        cvs = ds.Canvas(plot_width=width, plot_height=height,
                        x_range=x_range, y_range=y_range)
        if wireframe:
            agg = cvs.line(segments, x=['x0', 'x1', 'x2', 'x3'],
                           y=['y0', 'y1', 'y2', 'y3'], axis=1,
                           agg=agg)