Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def test_doc_classification():
#caplog.set_level(logging.CRITICAL)
set_all_seeds(seed=42)
device, n_gpu = initialize_device_settings(use_cuda=False)
n_epochs = 1
batch_size = 1
evaluate_every = 2
lang_model = "roberta-base"
tokenizer = RobertaTokenizer.from_pretrained(
pretrained_model_name_or_path=lang_model)
processor = TextClassificationProcessor(tokenizer=tokenizer,
max_seq_len=8,
data_dir="samples/doc_class",
train_filename="train-sample.tsv",
label_list=["OTHER", "OFFENSE"],
metric="f1_macro",
dev_filename="test-sample.tsv",
test_filename=None,
def test_lm_finetuning_no_next_sentence(caplog):
caplog.set_level(logging.CRITICAL)
set_all_seeds(seed=42)
device, n_gpu = initialize_device_settings(use_cuda=False)
n_epochs = 1
batch_size = 1
evaluate_every = 2
lang_model = "bert-base-cased"
tokenizer = Tokenizer.load(
pretrained_model_name_or_path=lang_model, do_lower_case=False
)
processor = BertStyleLMProcessor(
data_dir="samples/lm_finetuning",
train_filename="train-sample.txt",
test_filename="test-sample.txt",
dev_filename=None,
tokenizer=tokenizer,
max_seq_len=12,
def test_qa(caplog):
caplog.set_level(logging.CRITICAL)
set_all_seeds(seed=42)
device, n_gpu = initialize_device_settings(use_cuda=True)
batch_size = 2
n_epochs = 1
evaluate_every = 4
base_LM_model = "bert-base-cased"
tokenizer = Tokenizer.load(
pretrained_model_name_or_path=base_LM_model, do_lower_case=False
)
label_list = ["start_token", "end_token"]
processor = SquadProcessor(
tokenizer=tokenizer,
max_seq_len=20,
doc_stride=10,
max_query_length=6,
train_filename="train-sample.json",
dev_filename="dev-sample.json",
def test_doc_classification(caplog=None):
if caplog:
caplog.set_level(logging.CRITICAL)
set_all_seeds(seed=42)
device, n_gpu = initialize_device_settings(use_cuda=True)
n_epochs = 1
batch_size = 1
evaluate_every = 2
lang_model = "bert-base-german-cased"
tokenizer = Tokenizer.load(
pretrained_model_name_or_path=lang_model,
do_lower_case=False)
processor = TextClassificationProcessor(tokenizer=tokenizer,
max_seq_len=8,
data_dir="samples/doc_class",
train_filename="train-sample.tsv",
label_list=["OTHER", "OFFENSE"],
metric="f1_macro",
dev_filename="test-sample.tsv",
from farm.train import Trainer
from farm.utils import set_all_seeds, MLFlowLogger, initialize_device_settings
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO)
ml_logger = MLFlowLogger(tracking_uri="https://public-mlflow.deepset.ai/")
ml_logger.init_experiment(experiment_name="Public_FARM", run_name="Run_doc_regression")
##########################
########## Settings
##########################
set_all_seeds(seed=42)
device, n_gpu = initialize_device_settings(use_cuda=True)
n_epochs = 5
batch_size = 32
evaluate_every = 30
lang_model = "bert-base-cased"
# 1.Create a tokenizer
tokenizer = Tokenizer.load(
pretrained_model_name_or_path=lang_model,
do_lower_case=False)
# 2. Create a DataProcessor that handles all the conversion from raw text into a pytorch Dataset
# We do not have a sample dataset for regression yet, add your own dataset to run the example
processor = RegressionProcessor(tokenizer=tokenizer,
max_seq_len=128,
data_dir="../data/",
label_column_name="label"
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
set_all_seeds(seed=42)
ml_logger = MLFlowLogger(tracking_uri="https://public-mlflow.deepset.ai/")
ml_logger.init_experiment(
experiment_name="Public_FARM", run_name="Run_minimal_example_lm"
)
##########################
########## Settings
##########################
device, n_gpu = initialize_device_settings(use_cuda=True)
n_epochs = 1
batch_size = 32
evaluate_every = 30
lang_model = "bert-base-cased"
# 1.Create a tokenizer
tokenizer = Tokenizer.load(
pretrained_model_name_or_path=lang_model, do_lower_case=False
)
# 2. Create a DataProcessor that handles all the conversion from raw text into a pytorch Dataset
processor = BertStyleLMProcessor(
data_dir="../data/lm_finetune_nips", tokenizer=tokenizer, max_seq_len=128, max_docs=30
)
# 3. Create a DataSilo that loads several datasets (train/dev/test), provides DataLoaders for them and calculates a few descriptive statistics of our datasets
data_silo = DataSilo(processor=processor, batch_size=batch_size, max_multiprocessing_chunksize=20)
from farm.utils import set_all_seeds, MLFlowLogger, initialize_device_settings
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
# ml_logger = MLFlowLogger(tracking_uri="https://public-mlflow.deepset.ai/")
# ml_logger.init_experiment(experiment_name="Public_FARM", run_name="Run_minimal_example_ner")
##########################
########## Settings
##########################
set_all_seeds(seed=42)
device, n_gpu = initialize_device_settings(use_cuda=True)
n_epochs = 1
batch_size = 32
evaluate_every = 100
lang_model = "bert-base-german-cased"
# 1.Create a tokenizer
tokenizer = Tokenizer.load(
pretrained_model_name_or_path=lang_model,
do_lower_case=False)
# 2. Create a DataProcessor that handles all the conversion from raw text into a pytorch Dataset
ner_labels = ["[PAD]", "X", "O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", "B-OTH", "I-OTH"]
processor = NERProcessor(
tokenizer=tokenizer, max_seq_len=128, data_dir="../data/conll03-de", metric="seq_f1",label_list=ner_labels
)
"""
if dev_filename:
dev_split = None
set_all_seeds(seed=42)
# For these variables, by default, we use the value set when initializing the FARMReader.
# These can also be manually set when train() is called if you want a different value at train vs inference
if use_gpu is None:
use_gpu = self.use_gpu
if max_seq_len is None:
max_seq_len = self.max_seq_len
device, n_gpu = initialize_device_settings(use_cuda=use_gpu)
if not save_dir:
save_dir = f"../../saved_models/{self.inferencer.model.language_model.name}"
# 1. Create a DataProcessor that handles all the conversion from raw text into a pytorch Dataset
label_list = ["start_token", "end_token"]
metric = "squad"
processor = SquadProcessor(
tokenizer=self.inferencer.processor.tokenizer,
max_seq_len=max_seq_len,
label_list=label_list,
metric=metric,
train_filename=train_filename,
dev_filename=dev_filename,
dev_split=dev_split,
test_filename=test_file_name,