How to use the espnet.utils.cli_writers.file_writer_helper function in espnet

To help you get started, we’ve selected a few espnet examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github espnet / espnet / utils / compute-cmvn-stats.py View on Github external
_cmvn_stats[0, :-1] = sum_feats[spk]
        _cmvn_stats[1, :-1] = square_sum_feats[spk]

        _cmvn_stats[0, -1] = counts[spk]
        _cmvn_stats[1, -1] = 0.

        # You can get the mean and std as following,
        # >>> N = _cmvn_stats[0, -1]
        # >>> mean = _cmvn_stats[0, :-1] / N
        # >>> std = np.sqrt(_cmvn_stats[1, :-1] / N - mean ** 2)

        cmvn_stats[spk] = _cmvn_stats

    # Per utterance or speaker CMVN
    if is_wspecifier:
        with file_writer_helper(args.wspecifier_or_wxfilename,
                                filetype=args.out_filetype) as writer:
            for spk, mat in cmvn_stats.items():
                writer[spk] = mat

    # Global CMVN
    else:
        matrix = cmvn_stats[None]
        if args.out_filetype == 'npy':
            np.save(args.wspecifier_or_wxfilename, matrix)
        elif args.out_filetype == 'mat':
            # Kaldi supports only matrix or vector
            kaldiio.save_mat(args.wspecifier_or_wxfilename, matrix)
        else:
            raise RuntimeError('Not supporting: --out-filetype {}'
                               .format(args.out_filetype))
github espnet / espnet / utils / compute-fbank-feats.py View on Github external
def main():
    parser = get_parser()
    args = parser.parse_args()

    logfmt = "%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s"
    if args.verbose > 0:
        logging.basicConfig(level=logging.INFO, format=logfmt)
    else:
        logging.basicConfig(level=logging.WARN, format=logfmt)
    logging.info(get_commandline_args())

    with kaldiio.ReadHelper(args.rspecifier,
                            segments=args.segments) as reader, \
            file_writer_helper(args.wspecifier,
                               filetype=args.filetype,
                               write_num_frames=args.write_num_frames,
                               compress=args.compress,
                               compression_method=args.compression_method
                               ) as writer:
        for utt_id, (rate, array) in reader:
            assert rate == args.fs
            array = array.astype(numpy.float32)
            if args.normalize is not None and args.normalize != 1:
                array = array / (1 << (args.normalize - 1))

            lmspc = logmelspectrogram(
                x=array,
                fs=args.fs,
                n_mels=args.n_mels,
                n_fft=args.n_fft,
github espnet / espnet / espnet / asr / pytorch_backend / asr.py View on Github external
model.cuda()

    # read json data
    with open(args.recog_json, 'rb') as f:
        js = json.load(f)['utts']

    load_inputs_and_targets = LoadInputsAndTargets(
        mode='asr', load_output=False, sort_in_input_length=False,
        preprocess_conf=None  # Apply pre_process in outer func
    )
    if args.batchsize == 0:
        args.batchsize = 1

    # Creates writers for outputs from the network
    if args.enh_wspecifier is not None:
        enh_writer = file_writer_helper(args.enh_wspecifier,
                                        filetype=args.enh_filetype)
    else:
        enh_writer = None

    # Creates a Transformation instance
    preprocess_conf = (
        train_args.preprocess_conf if args.preprocess_conf is None
        else args.preprocess_conf)
    if preprocess_conf is not None:
        logging.info('Use preprocessing'.format(preprocess_conf))
        transform = Transformation(preprocess_conf)
    else:
        transform = None

    # Creates a IStft instance
    istft = None
github espnet / espnet / utils / compute-fbank-feats.py View on Github external
def main():
    parser = get_parser()
    args = parser.parse_args()

    logfmt = "%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s"
    if args.verbose > 0:
        logging.basicConfig(level=logging.INFO, format=logfmt)
    else:
        logging.basicConfig(level=logging.WARN, format=logfmt)
    logging.info(get_commandline_args())

    with kaldiio.ReadHelper(args.rspecifier,
                            segments=args.segments) as reader, \
            file_writer_helper(args.wspecifier,
                               filetype=args.filetype,
                               write_num_frames=args.write_num_frames,
                               compress=args.compress,
                               compression_method=args.compression_method
                               ) as writer:
        for utt_id, (rate, array) in reader:
            array = array.astype(numpy.float32)
            if rate != args.fs:
                array = librosa.resample(array, rate, args.fs)

            if args.normalize is not None and args.normalize != 1:
                array = array / (1 << (args.normalize - 1))

            lmspc = logmelspectrogram(
                x=array,
                fs=args.fs,
github espnet / espnet / utils / dump-pcm.py View on Github external
args = parser.parse_args()

    logfmt = "%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s"
    if args.verbose > 0:
        logging.basicConfig(level=logging.INFO, format=logfmt)
    else:
        logging.basicConfig(level=logging.WARN, format=logfmt)
    logging.info(get_commandline_args())

    if args.preprocess_conf is not None:
        preprocessing = Transformation(args.preprocess_conf)
        logging.info('Apply preprocessing: {}'.format(preprocessing))
    else:
        preprocessing = None

    with file_writer_helper(args.wspecifier,
                            filetype=args.filetype,
                            write_num_frames=args.write_num_frames,
                            compress=args.compress,
                            compression_method=args.compression_method,
                            pcm_format=args.format
                            ) as writer:
        for utt_id, (rate, array) in kaldiio.ReadHelper(args.rspecifier,
                                                        args.segments):
            if args.filetype == 'mat':
                # Kaldi-matrix doesn't support integer
                array = array.astype(numpy.float32)

            if array.ndim == 1:
                # (Time) -> (Time, Channel)
                array = array[:, None]
github didi / delta / utils / speech / copy_feats.py View on Github external
def main():
  parser = get_parser()
  args = parser.parse_args()

  d = kaldiio.load_ark(args.rspecifier)

  with file_writer_helper(
      args.wspecifier,
      filetype='mat',
      write_num_frames=args.write_num_frames,
      compress=args.compress,
      compression_method=args.compression_method) as writer:
    for utt, mat in d:
      writer[utt] = mat
github espnet / espnet / utils / apply-cmvn.py View on Github external
else:
        is_rspcifier = False
        if args.stats_filetype == 'mat':
            stats = kaldiio.load_mat(args.stats_rspecifier_or_rxfilename)
        else:
            stats = numpy.load(args.stats_rspecifier_or_rxfilename)
        stats_dict = {None: stats}

    cmvn = CMVN(stats=stats_dict,
                norm_means=args.norm_means,
                norm_vars=args.norm_vars,
                utt2spk=args.utt2spk,
                spk2utt=args.spk2utt,
                reverse=args.reverse)

    with file_writer_helper(
            args.wspecifier,
            filetype=args.out_filetype,
            write_num_frames=args.write_num_frames,
            compress=args.compress,
            compression_method=args.compression_method) as writer:
        for utt, mat in file_reader_helper(args.rspecifier, args.in_filetype):
            if is_scipy_wav_style(mat):
                # If data is sound file, then got as Tuple[int, ndarray]
                rate, mat = mat
            mat = cmvn(mat, utt if is_rspcifier else None)
            writer[utt] = mat