How to use the eliot.log_call function in eliot

To help you get started, we’ve selected a few eliot examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github ADicksonLab / wepy / src / wepy / resampling / resamplers / wexplore.py View on Github external
    @log_call(include_args=[],
              include_result=False)
    def resample(self, walkers):

        # do some initialiation routines and debugging preparations if
        # necessary
        self._resample_init(walkers=walkers)

        ## assign/score the walkers, also getting changes in the
        ## resampler state
        assignments, resampler_data = self.assign(walkers)


        # make the decisions for the the walkers for only a single
        # step
        resampling_data = self.decide(delta_walkers=0)
github ADicksonLab / wepy / src / wepy / sim_manager.py View on Github external
    @log_call(
        include_args=[
            'segment_length',
            'cycle_idx',
        ],
        include_result=False,
    )
    def run_segment(self, walkers, segment_length, cycle_idx):
        """Run a time segment for all walkers using the available workers.

        Maps the work for running each segment for each walker using
        the work mapper.

        Walkers will have the same weights but different states.

        Parameters
        ----------
github ADicksonLab / wepy / src / wepy / work_mapper / mapper.py View on Github external
    @log_call(include_args=[],
              include_result=False)
    def map(self, *args, **kwargs):
        """Map the 'segment_func' to args.

        Parameters
        ----------
        *args : list of list
            Each element is the argument to one call of 'segment_func'.

        Returns
        -------
        results : list
            The results of each call to 'segment_func' in the same order as input.

        Examples
        --------
github ADicksonLab / wepy / src / wepy / work_mapper / mapper.py View on Github external
    @log_call(include_args=[],
              include_result=False)
    def cleanup(self, **kwargs):
        """Runtime post-simulation tasks.

        This is run either at the end of a successful simulation or
        upon an error in the main process of the simulation manager
        call to `run_cycle`.

        The Mapper class performs no actions here and all arguments
        are ignored.

        """

        # nothing to do
        pass
github ADicksonLab / wepy / src / wepy / runners / runner.py View on Github external
    @log_call(include_args=[],
              include_result=False)
    def post_cycle(self, **kwargs):
        """Perform post-cycle behavior. run_segment will be called for each
        walker so this allows you to perform changes of state on a
        per-cycle basis.

        Parameters
        ----------

        kwargs : key-word arguments
            Key-value pairs to be interpreted by each runner implementation.

        """

        # by default just pass since subclasses need not implement this
        pass
github itamarst / eliot / examples / dask_eliot.py View on Github external
@log_call
def main_computation():
    bag = from_sequence([1, 2, 3])
    bag = bag.map(multiply).fold(add)
    return compute_with_trace(bag)[0]  # instead of dask.compute(bag)
github ADicksonLab / wepy / src / wepy / sim_manager.py View on Github external
    @log_call(include_args=[
        'n_segment_steps',
        'cycle_idx',
        'runner_opts'],
              include_result=False)
    def run_cycle(self,
                  walkers,
                  n_segment_steps,
                  cycle_idx,
                  runner_opts=None,
    ):
        """Run a full cycle of weighted ensemble simulation using each
        component.

        The order of application of wepy components are:

        - runner
github itamarst / eliot / presentations / scientific-logging / badmath.py View on Github external
@log_call
def multiplysum(a, b, c):
    return multiply(add(a, b), c)
github ADicksonLab / wepy / src / wepy / runners / openmm.py View on Github external
    @log_call(
        include_args=[
            'segment_length',
            'getState_kwargs',
            'platform',
            'platform_kwargs',
        ],
        include_result=False,
    )
    def run_segment(self,
                    walker,
                    segment_length,
                    getState_kwargs=None,
                    platform=None,
                    platform_kwargs=None,
                    **kwargs):
        """Run dynamics for the walker.