How to use elephas - 10 common examples

To help you get started, we’ve selected a few elephas examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github maxpumperla / elephas / tests / test_spark_model.py View on Github external
spark_model = SparkModel(model, frequency='batch',
                             mode='synchronous', num_workers=2)
    spark_model.fit(rdd, epochs=epochs, batch_size=batch_size,
                    verbose=2, validation_split=0.1)
    score = spark_model.master_network.evaluate(x_test, y_test, verbose=2)
    print('Test accuracy:', score[1])

    # async epoch
    spark_model = SparkModel(model, frequency='epoch', mode='asynchronous')
    spark_model.fit(rdd, epochs=epochs, batch_size=batch_size,
                    verbose=2, validation_split=0.1)
    score = spark_model.master_network.evaluate(x_test, y_test, verbose=2)
    print('Test accuracy:', score[1])

    # hog wild epoch
    spark_model = SparkModel(model, frequency='epoch', mode='hogwild')
    spark_model.fit(rdd, epochs=epochs, batch_size=batch_size,
                    verbose=2, validation_split=0.1)
    score = spark_model.master_network.evaluate(x_test, y_test, verbose=2)
    print('Test accuracy:', score[1])
github maxpumperla / elephas / tests / test_ml_model.py View on Github external
def test_spark_ml_model(spark_context):

    df = to_data_frame(spark_context, x_train, y_train, categorical=True)
    test_df = to_data_frame(spark_context, x_test, y_test, categorical=True)

    sgd = optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
    sgd_conf = optimizers.serialize(sgd)

    # Initialize Spark ML Estimator
    estimator = ElephasEstimator()
    estimator.set_keras_model_config(model.to_yaml())
    estimator.set_optimizer_config(sgd_conf)
    estimator.set_mode("synchronous")
    estimator.set_loss("categorical_crossentropy")
    estimator.set_metrics(['acc'])
    estimator.set_epochs(epochs)
    estimator.set_batch_size(batch_size)
    estimator.set_validation_split(0.1)
    estimator.set_categorical_labels(True)
github maxpumperla / elephas / tests / test_ml_model.py View on Github external
def test_spark_ml_model(spark_context):

    df = to_data_frame(spark_context, x_train, y_train, categorical=True)
    test_df = to_data_frame(spark_context, x_test, y_test, categorical=True)

    sgd = optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
    sgd_conf = optimizers.serialize(sgd)

    # Initialize Spark ML Estimator
    estimator = ElephasEstimator()
    estimator.set_keras_model_config(model.to_yaml())
    estimator.set_optimizer_config(sgd_conf)
    estimator.set_mode("synchronous")
    estimator.set_loss("categorical_crossentropy")
    estimator.set_metrics(['acc'])
    estimator.set_epochs(epochs)
    estimator.set_batch_size(batch_size)
    estimator.set_validation_split(0.1)
    estimator.set_categorical_labels(True)
    estimator.set_nb_classes(nb_classes)
github maxpumperla / elephas / tests / test_mllib_model.py View on Github external
def test_mllib_model(spark_context):
    # Build RDD from numpy features and labels
    lp_rdd = to_labeled_point(spark_context, x_train,
                              y_train, categorical=True)

    # Initialize SparkModel from Keras model and Spark context
    spark_model = SparkMLlibModel(
        model=model, frequency='epoch', mode='synchronous')

    # Train Spark model
    spark_model.fit(lp_rdd, epochs=5, batch_size=32, verbose=0,
                    validation_split=0.1, categorical=True, nb_classes=nb_classes)

    # Evaluate Spark model by evaluating the underlying model
    score = spark_model.master_network.evaluate(x_test, y_test, verbose=2)
    print('Test accuracy:', score[1])
github maxpumperla / elephas / tests / test_spark_model.py View on Github external
def test_spark_model_end_to_end(spark_context):
    rdd = to_simple_rdd(spark_context, x_train, y_train)

    # sync epoch
    spark_model = SparkModel(model, frequency='epoch',
                             mode='synchronous', num_workers=2)
    spark_model.fit(rdd, epochs=epochs, batch_size=batch_size,
                    verbose=2, validation_split=0.1)
    score = spark_model.master_network.evaluate(x_test, y_test, verbose=2)
    print('Test accuracy:', score[1])

    # sync batch
    spark_model = SparkModel(model, frequency='batch',
                             mode='synchronous', num_workers=2)
    spark_model.fit(rdd, epochs=epochs, batch_size=batch_size,
                    verbose=2, validation_split=0.1)
    score = spark_model.master_network.evaluate(x_test, y_test, verbose=2)
    print('Test accuracy:', score[1])
github maxpumperla / elephas / tests / integration / test_mnist_mlp_spark.py View on Github external
model = Sequential()
    model.add(Dense(128, input_dim=784))
    model.add(Activation('relu'))
    model.add(Dropout(0.2))
    model.add(Dense(128))
    model.add(Activation('relu'))
    model.add(Dropout(0.2))
    model.add(Dense(10))
    model.add(Activation('softmax'))

    sgd = SGD(lr=0.1)
    model.compile(sgd, 'categorical_crossentropy', ['acc'])

    # Build RDD from numpy features and labels
    rdd = to_simple_rdd(spark_context, x_train, y_train)

    # Initialize SparkModel from Keras model and Spark context
    spark_model = SparkModel(model, frequency='epoch', mode='asynchronous')

    # Train Spark model
    spark_model.fit(rdd, epochs=epochs, batch_size=batch_size,
                    verbose=0, validation_split=0.1)
    # Evaluate Spark model by evaluating the underlying model
    score = spark_model.master_network.evaluate(x_test, y_test, verbose=2)
    assert score[1] >= 0.7
github maxpumperla / elephas / tests / integration / test_mnist_mlp_spark_synchronous.py View on Github external
model = Sequential()
    model.add(Dense(128, input_dim=784))
    model.add(Activation('relu'))
    model.add(Dropout(0.2))
    model.add(Dense(128))
    model.add(Activation('relu'))
    model.add(Dropout(0.2))
    model.add(Dense(10))
    model.add(Activation('softmax'))

    sgd = SGD(lr=0.1)
    model.compile(sgd, 'categorical_crossentropy', ['acc'])

    # Build RDD from numpy features and labels
    rdd = to_simple_rdd(spark_context, x_train, y_train)

    # Initialize SparkModel from Keras model and Spark context
    spark_model = SparkModel(model, mode='synchronous')

    # Train Spark model
    spark_model.fit(rdd, epochs=epochs, batch_size=batch_size,
                    verbose=2, validation_split=0.1)

    # Evaluate Spark model by evaluating the underlying model
    score = spark_model.master_network.evaluate(x_test, y_test, verbose=2)
    assert score[1] >= 0.70
github maxpumperla / elephas / tests / test_ml_model.py View on Github external
def test_spark_ml_model(spark_context):

    df = to_data_frame(spark_context, x_train, y_train, categorical=True)
    test_df = to_data_frame(spark_context, x_test, y_test, categorical=True)

    sgd = optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
    sgd_conf = optimizers.serialize(sgd)

    # Initialize Spark ML Estimator
    estimator = ElephasEstimator()
    estimator.set_keras_model_config(model.to_yaml())
    estimator.set_optimizer_config(sgd_conf)
    estimator.set_mode("synchronous")
    estimator.set_loss("categorical_crossentropy")
    estimator.set_metrics(['acc'])
    estimator.set_epochs(epochs)
    estimator.set_batch_size(batch_size)
    estimator.set_validation_split(0.1)
    estimator.set_categorical_labels(True)
    estimator.set_nb_classes(nb_classes)

    # Fitting a model returns a Transformer
    pipeline = Pipeline(stages=[estimator])
    fitted_pipeline = pipeline.fit(df)

    # Evaluate Spark model by evaluating the underlying model
github maxpumperla / elephas / tests / test_model_serialization.py View on Github external
# This returns a tensor
    inputs = Input(shape=(784,))

    # a layer instance is callable on a tensor, and returns a tensor
    x = Dense(64, activation='relu')(inputs)
    x = Dense(64, activation='relu')(x)
    predictions = Dense(10, activation='softmax')(x)

    # This creates a model that includes
    # the Input layer and three Dense layers
    model = Model(inputs=inputs, outputs=predictions)
    model.compile(optimizer='rmsprop',
                  loss='categorical_crossentropy',
                  metrics=['accuracy'])

    spark_model = SparkModel(model, frequency='epoch',
                             mode='synchronous', foo="bar")
    spark_model.save("elephas_model.h5")
github maxpumperla / elephas / tests / test_model_serialization.py View on Github external
# Create Spark context
    pytest.mark.usefixtures("spark_context")

    seq_model = Sequential()
    seq_model.add(Dense(128, input_dim=784))
    seq_model.add(Activation('relu'))
    seq_model.add(Dropout(0.2))
    seq_model.add(Dense(128))
    seq_model.add(Activation('relu'))
    seq_model.add(Dropout(0.2))
    seq_model.add(Dense(10))
    seq_model.add(Activation('softmax'))

    seq_model.compile(
        optimizer="sgd", loss="categorical_crossentropy", metrics=["acc"])
    spark_model = SparkModel(seq_model, frequency='epoch', mode='synchronous')
    spark_model.save("elephas_sequential.h5")