How to use the ehtim.io.load.load_obs_uvfits function in ehtim

To help you get started, we’ve selected a few ehtim examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github sao-eht / eat / eat / io / uvfits.py View on Github external
#    print('Ehtim reloaded...')
    #    #except: pass
    import ehtim as eh
    path_eh = os.path.dirname(eh.__file__)
    print('Using eht-imaging library from ', path_eh)

    if force_singlepol=='LL':
        force_singlepol='L'
    if force_singlepol=='RR':
        force_singlepol='R'

    if force_singlepol=='no':
        print('reading data without singlepol, using polrep= ',polrep)
        filen = pathf.split('/')[-1]
        if polrep in ['circ','stokes']:
            obsXX = eh.io.load.load_obs_uvfits(pathf,polrep=polrep)
            print('Polrep is ', obsXX.polrep)
        else: 
            obsXX = eh.io.load.load_obs_uvfits(pathf)
            print('Polrep unspecified')
        dfXX = obsdata_2_df(obsXX)
        if 'RR' in filen:
            dfXX['polarization'] = 'RR'    
        elif 'LL' in filen:
            dfXX['polarization'] = 'LL' 
        else:
            dfXX['polarization'] = 'WTF' 
        df = dfXX.copy()
        df['band'] = band

        #Scale sigma
        df['sigma']=scale_sigma*df['sigma']
github sao-eht / eat / eat / io / uvfits.py View on Github external
elif force_singlepol=='':
        if polrep in ['circ','stokes']:
            obsRR = eh.io.load.load_obs_uvfits(pathf,  force_singlepol='R',polrep=polrep)
            obsLL = eh.io.load.load_obs_uvfits(pathf,  force_singlepol='L',polrep=polrep)
        else:
            obsRR = eh.io.load.load_obs_uvfits(pathf,  force_singlepol='R')
            obsLL = eh.io.load.load_obs_uvfits(pathf,  force_singlepol='L')
        dfRR = obsdata_2_df(obsRR)
        dfLL = obsdata_2_df(obsLL)
        dfRR['polarization'] = 'RR'
        dfLL['polarization'] = 'LL'
        df = pd.concat([dfRR,dfLL],ignore_index=True)

        if only_parallel==False:
            if polrep in ['circ','stokes']:
                obsRL = eh.io.load.load_obs_uvfits(pathf,  force_singlepol='RL',polrep=polrep)
                obsLR = eh.io.load.load_obs_uvfits(pathf,  force_singlepol='LR',polrep=polrep)
            else:
                obsRL = eh.io.load.load_obs_uvfits(pathf,  force_singlepol='RL')
                obsLR = eh.io.load.load_obs_uvfits(pathf,  force_singlepol='LR')
            dfRL = obsdata_2_df(obsRL)
            dfLR = obsdata_2_df(obsLR)
            dfRL['polarization'] = 'RL'
            dfLR['polarization'] = 'LR'
            df = pd.concat([df,dfLR,dfRL],ignore_index=True)

        df['band'] = band  
        if rescale_noise==True:
            rscRR = obsRR.estimate_noise_rescale_factor()
            rscLL = obsLL.estimate_noise_rescale_factor()
            rsc=0.5*(rscRR+rscLL)
            df['sigma']=rsc*df['sigma']
github sao-eht / eat / eat / io / uvfits.py View on Github external
if polrep in ['circ','stokes']:
            obsRR = eh.io.load.load_obs_uvfits(pathf,  force_singlepol='R',polrep=polrep)
            obsLL = eh.io.load.load_obs_uvfits(pathf,  force_singlepol='L',polrep=polrep)
        else:
            obsRR = eh.io.load.load_obs_uvfits(pathf,  force_singlepol='R')
            obsLL = eh.io.load.load_obs_uvfits(pathf,  force_singlepol='L')
        dfRR = obsdata_2_df(obsRR)
        dfLL = obsdata_2_df(obsLL)
        dfRR['polarization'] = 'RR'
        dfLL['polarization'] = 'LL'
        df = pd.concat([dfRR,dfLL],ignore_index=True)

        if only_parallel==False:
            if polrep in ['circ','stokes']:
                obsRL = eh.io.load.load_obs_uvfits(pathf,  force_singlepol='RL',polrep=polrep)
                obsLR = eh.io.load.load_obs_uvfits(pathf,  force_singlepol='LR',polrep=polrep)
            else:
                obsRL = eh.io.load.load_obs_uvfits(pathf,  force_singlepol='RL')
                obsLR = eh.io.load.load_obs_uvfits(pathf,  force_singlepol='LR')
            dfRL = obsdata_2_df(obsRL)
            dfLR = obsdata_2_df(obsLR)
            dfRL['polarization'] = 'RL'
            dfLR['polarization'] = 'LR'
            df = pd.concat([df,dfLR,dfRL],ignore_index=True)

        df['band'] = band  
        if rescale_noise==True:
            rscRR = obsRR.estimate_noise_rescale_factor()
            rscLL = obsLL.estimate_noise_rescale_factor()
            rsc=0.5*(rscRR+rscLL)
            df['sigma']=rsc*df['sigma']
github sao-eht / eat / eat / io / uvfits.py View on Github external
df['lrsigma'] = fix_sigma

        if rescale_noise==True:
            obsXX10 = obsXX.avg_coherent(10.)
            rsc = obsXX10.estimate_noise_rescale_factor(max_diff_sec=1000.)
            print('Applying noise rescaling to data, factor is: ', rsc)
            df['sigma']=rsc*df['sigma']
            if 'rrsigma' in df.columns:
                df['rrsigma'] = rsc*df['rrsigma']
                df['llsigma'] = rsc*df['llsigma']
                df['rlsigma'] = rsc*df['rlsigma']
                df['lrsigma'] = rsc*df['lrsigma']

    elif force_singlepol=='':
        if polrep in ['circ','stokes']:
            obsRR = eh.io.load.load_obs_uvfits(pathf,  force_singlepol='R',polrep=polrep)
            obsLL = eh.io.load.load_obs_uvfits(pathf,  force_singlepol='L',polrep=polrep)
        else:
            obsRR = eh.io.load.load_obs_uvfits(pathf,  force_singlepol='R')
            obsLL = eh.io.load.load_obs_uvfits(pathf,  force_singlepol='L')
        dfRR = obsdata_2_df(obsRR)
        dfLL = obsdata_2_df(obsLL)
        dfRR['polarization'] = 'RR'
        dfLL['polarization'] = 'LL'
        df = pd.concat([dfRR,dfLL],ignore_index=True)

        if only_parallel==False:
            if polrep in ['circ','stokes']:
                obsRL = eh.io.load.load_obs_uvfits(pathf,  force_singlepol='RL',polrep=polrep)
                obsLR = eh.io.load.load_obs_uvfits(pathf,  force_singlepol='LR',polrep=polrep)
            else:
                obsRL = eh.io.load.load_obs_uvfits(pathf,  force_singlepol='RL')
github sao-eht / eat / eat / io / uvfits.py View on Github external
else:
            obsRR = eh.io.load.load_obs_uvfits(pathf,  force_singlepol='R')
            obsLL = eh.io.load.load_obs_uvfits(pathf,  force_singlepol='L')
        dfRR = obsdata_2_df(obsRR)
        dfLL = obsdata_2_df(obsLL)
        dfRR['polarization'] = 'RR'
        dfLL['polarization'] = 'LL'
        df = pd.concat([dfRR,dfLL],ignore_index=True)

        if only_parallel==False:
            if polrep in ['circ','stokes']:
                obsRL = eh.io.load.load_obs_uvfits(pathf,  force_singlepol='RL',polrep=polrep)
                obsLR = eh.io.load.load_obs_uvfits(pathf,  force_singlepol='LR',polrep=polrep)
            else:
                obsRL = eh.io.load.load_obs_uvfits(pathf,  force_singlepol='RL')
                obsLR = eh.io.load.load_obs_uvfits(pathf,  force_singlepol='LR')
            dfRL = obsdata_2_df(obsRL)
            dfLR = obsdata_2_df(obsLR)
            dfRL['polarization'] = 'RL'
            dfLR['polarization'] = 'LR'
            df = pd.concat([df,dfLR,dfRL],ignore_index=True)

        df['band'] = band  
        if rescale_noise==True:
            rscRR = obsRR.estimate_noise_rescale_factor()
            rscLL = obsLL.estimate_noise_rescale_factor()
            rsc=0.5*(rscRR+rscLL)
            df['sigma']=rsc*df['sigma']

    else: 
        obs = eh.io.load.load_obs_uvfits(pathf,  force_singlepol=force_singlepol)
        df = obsdata_2_df(obs)
github achael / eht-imaging / ehtim / obsdata.py View on Github external
def load_uvfits(fname, flipbl=False, force_singlepol=None, channel=all, IF=all):

    """Load observation data from a uvfits file.

       Args:
           fname (str): path to input text file
           flipbl (bool): flip baseline phases if True.
           force_singlepol (str): 'R' or 'L' to load only 1 polarization
           channel (list): list of channels to average in the import. channel=all averages all channels
           IF (list): list of IFs to  average in  the import. IF=all averages all IFS
       Returns:
           obs (Obsdata): Obsdata object loaded from file
    """

    return ehtim.io.load.load_obs_uvfits(fname, flipbl=flipbl, force_singlepol=force_singlepol, channel=channel, IF=IF)
github sao-eht / eat / eat / io / uvfits.py View on Github external
obsLL = eh.io.load.load_obs_uvfits(pathf,  force_singlepol='L',polrep=polrep)
        else:
            obsRR = eh.io.load.load_obs_uvfits(pathf,  force_singlepol='R')
            obsLL = eh.io.load.load_obs_uvfits(pathf,  force_singlepol='L')
        dfRR = obsdata_2_df(obsRR)
        dfLL = obsdata_2_df(obsLL)
        dfRR['polarization'] = 'RR'
        dfLL['polarization'] = 'LL'
        df = pd.concat([dfRR,dfLL],ignore_index=True)

        if only_parallel==False:
            if polrep in ['circ','stokes']:
                obsRL = eh.io.load.load_obs_uvfits(pathf,  force_singlepol='RL',polrep=polrep)
                obsLR = eh.io.load.load_obs_uvfits(pathf,  force_singlepol='LR',polrep=polrep)
            else:
                obsRL = eh.io.load.load_obs_uvfits(pathf,  force_singlepol='RL')
                obsLR = eh.io.load.load_obs_uvfits(pathf,  force_singlepol='LR')
            dfRL = obsdata_2_df(obsRL)
            dfLR = obsdata_2_df(obsLR)
            dfRL['polarization'] = 'RL'
            dfLR['polarization'] = 'LR'
            df = pd.concat([df,dfLR,dfRL],ignore_index=True)

        df['band'] = band  
        if rescale_noise==True:
            rscRR = obsRR.estimate_noise_rescale_factor()
            rscLL = obsLL.estimate_noise_rescale_factor()
            rsc=0.5*(rscRR+rscLL)
            df['sigma']=rsc*df['sigma']

    else: 
        obs = eh.io.load.load_obs_uvfits(pathf,  force_singlepol=force_singlepol)
github sao-eht / eat / eat / io / uvfits.py View on Github external
obsXX10 = obsXX.avg_coherent(10.)
            rsc = obsXX10.estimate_noise_rescale_factor(max_diff_sec=1000.)
            print('Applying noise rescaling to data, factor is: ', rsc)
            df['sigma']=rsc*df['sigma']
            if 'rrsigma' in df.columns:
                df['rrsigma'] = rsc*df['rrsigma']
                df['llsigma'] = rsc*df['llsigma']
                df['rlsigma'] = rsc*df['rlsigma']
                df['lrsigma'] = rsc*df['lrsigma']

    elif force_singlepol=='':
        if polrep in ['circ','stokes']:
            obsRR = eh.io.load.load_obs_uvfits(pathf,  force_singlepol='R',polrep=polrep)
            obsLL = eh.io.load.load_obs_uvfits(pathf,  force_singlepol='L',polrep=polrep)
        else:
            obsRR = eh.io.load.load_obs_uvfits(pathf,  force_singlepol='R')
            obsLL = eh.io.load.load_obs_uvfits(pathf,  force_singlepol='L')
        dfRR = obsdata_2_df(obsRR)
        dfLL = obsdata_2_df(obsLL)
        dfRR['polarization'] = 'RR'
        dfLL['polarization'] = 'LL'
        df = pd.concat([dfRR,dfLL],ignore_index=True)

        if only_parallel==False:
            if polrep in ['circ','stokes']:
                obsRL = eh.io.load.load_obs_uvfits(pathf,  force_singlepol='RL',polrep=polrep)
                obsLR = eh.io.load.load_obs_uvfits(pathf,  force_singlepol='LR',polrep=polrep)
            else:
                obsRL = eh.io.load.load_obs_uvfits(pathf,  force_singlepol='RL')
                obsLR = eh.io.load.load_obs_uvfits(pathf,  force_singlepol='LR')
            dfRL = obsdata_2_df(obsRL)
            dfLR = obsdata_2_df(obsLR)