How to use the deephyper.search.nas.operation.mlp.MLP function in deephyper

To help you get started, we’ve selected a few deephyper examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github deephyper / deephyper / deephyper / search / nas / model / baseline / mlp.py View on Github external
def create_block():
        # first node of block
        n1 = Node('N1')
        for inpt in input_nodes:
            n1.add_op(Connect(cell.graph, inpt, n1))

        # second node of block
        mlp_op_list = list()
        mlp_op_list.append(Identity())
        mlp_op_list.append(MLP(1, 5, tf.nn.relu))
        mlp_op_list.append(MLP(1, 5, tf.nn.tanh))
        mlp_op_list.append(MLP(1, 10, tf.nn.relu))
        mlp_op_list.append(MLP(1, 10, tf.nn.tanh))
        mlp_op_list.append(MLP(1, 20, tf.nn.relu))
        mlp_op_list.append(MLP(1, 20, tf.nn.tanh))
        n2 = Node('N2')
        for op in mlp_op_list:
            n2.add_op(op)

        # third node of block
        n3 = Node('N3')
        for op in mlp_op_list:
            n3.add_op(op)

        # fourth node of block
        n4 = Node('N4')
        for op in mlp_op_list:
            n4.add_op(op)

        # fifth
github deephyper / deephyper / deephyper / search / nas / model / baseline / mlp.py View on Github external
cell = Cell(input_nodes)

    # first node of block
    n1 = Node('N1')
    for inpt in input_nodes:
        n1.add_op(Connect(cell.graph, inpt, n1))

    # second node of block
    mlp_op_list = list()
    mlp_op_list.append(Identity())
    mlp_op_list.append(MLP(1, 5, tf.nn.relu))
    mlp_op_list.append(MLP(1, 10, tf.nn.relu))
    mlp_op_list.append(MLP(1, 20, tf.nn.relu))
    mlp_op_list.append(MLP(1, 40, tf.nn.relu))
    mlp_op_list.append(MLP(1, 80, tf.nn.relu))
    mlp_op_list.append(MLP(1, 160, tf.nn.relu))
    mlp_op_list.append(MLP(1, 320, tf.nn.relu))
    n2 = Node('N2')
    for op in mlp_op_list:
        n2.add_op(op)

    # third
    n3 = Node('N3')
    drop_ops = []
    drop_ops.extend(dropout_ops)
    for op in drop_ops:
        n3.add_op(op)

    # 1 Blocks
    block1 = Block()
    block1.add_node(n1)
    block1.add_node(n2)
github deephyper / deephyper / deephyper / search / nas / model / baseline / mlp.py View on Github external
def create_dense_cell_toy(input_nodes):
    cell = Cell(input_nodes)

    n1 = Node('N1')
    n1.add_op(Connect(cell.graph, input_nodes[-1], n1))

    # first node of block
    mlp_op_list = list()
    mlp_op_list.append(MLP(1, 5, tf.nn.relu))
    mlp_op_list.append(MLP(1, 10, tf.nn.relu))
    mlp_op_list.append(MLP(1, 20, tf.nn.relu))
    mlp_op_list.append(MLP(1, 40, tf.nn.relu))
    mlp_op_list.append(MLP(1, 80, tf.nn.relu))
    mlp_op_list.append(MLP(1, 160, tf.nn.relu))
    mlp_op_list.append(MLP(1, 320, tf.nn.relu))
    n2 = Node('N2')
    for op in mlp_op_list:
        n2.add_op(op)

    # 1 Blocks
    block1 = Block()
    block1.add_node(n1)
    block1.add_node(n2)
    block1.add_edge(n1, n2)

    cell.add_block(block1)
github deephyper / deephyper / deephyper / search / nas / model / baseline / mlp.py View on Github external
def create_block():
        # first node of block
        n1 = Node('N1')
        for inpt in input_nodes:
            n1.add_op(Connect(cell.graph, inpt, n1))

        # second node of block
        mlp_op_list = list()
        mlp_op_list.append(Identity())
        mlp_op_list.append(MLP(1, 5, tf.nn.relu))
        mlp_op_list.append(MLP(1, 5, tf.nn.tanh))
        mlp_op_list.append(MLP(1, 10, tf.nn.relu))
        mlp_op_list.append(MLP(1, 10, tf.nn.tanh))
        mlp_op_list.append(MLP(1, 20, tf.nn.relu))
        mlp_op_list.append(MLP(1, 20, tf.nn.tanh))
        n2 = Node('N2')
        for op in mlp_op_list:
            n2.add_op(op)

        # third node of block
        n3 = Node('N3')
        for op in mlp_op_list:
            n3.add_op(op)

        # fourth node of block
        n4 = Node('N4')
        for op in mlp_op_list:
            n4.add_op(op)
github deephyper / deephyper / deephyper / search / nas / model / baseline / mlp.py View on Github external
Returns:
        Cell: a Cell instance.
    """
    cell = Cell(input_nodes)

    # first node of block
    n1 = Node('N1')
    for inpt in input_nodes:
        n1.add_op(Connect(cell.graph, inpt, n1))

    # second node of block
    mlp_op_list = list()
    mlp_op_list.append(Identity())
    mlp_op_list.append(MLP(1, 5, tf.nn.relu))
    mlp_op_list.append(MLP(1, 10, tf.nn.relu))
    mlp_op_list.append(MLP(1, 20, tf.nn.relu))
    mlp_op_list.append(MLP(1, 40, tf.nn.relu))
    mlp_op_list.append(MLP(1, 80, tf.nn.relu))
    mlp_op_list.append(MLP(1, 160, tf.nn.relu))
    mlp_op_list.append(MLP(1, 320, tf.nn.relu))
    n2 = Node('N2')
    for op in mlp_op_list:
        n2.add_op(op)

    # third
    n3 = Node('N3')
    drop_ops = []
    drop_ops.extend(dropout_ops)
    for op in drop_ops:
        n3.add_op(op)
github deephyper / deephyper / deephyper / search / nas / model / baseline / mlp.py View on Github external
def create_block():
        # first node of block
        n1 = Node('N1')
        for inpt in input_nodes:
            n1.add_op(Connect(cell.graph, inpt, n1))

        # second node of block
        mlp_op_list = list()
        mlp_op_list.append(Identity())
        mlp_op_list.append(MLP(1, 5, tf.nn.relu))
        mlp_op_list.append(MLP(1, 5, tf.nn.tanh))
        mlp_op_list.append(MLP(1, 10, tf.nn.relu))
        mlp_op_list.append(MLP(1, 10, tf.nn.tanh))
        mlp_op_list.append(MLP(1, 20, tf.nn.relu))
        mlp_op_list.append(MLP(1, 20, tf.nn.tanh))
        n2 = Node('N2')
        for op in mlp_op_list:
            n2.add_op(op)

        # third node of block
        n3 = Node('N3')
        for op in mlp_op_list:
            n3.add_op(op)

        # fourth node of block
        n4 = Node('N4')
        for op in mlp_op_list:
            n4.add_op(op)
github deephyper / deephyper / deephyper / search / nas / model / baseline / mlp.py View on Github external
Cell: a Cell instance.
    """
    cell = Cell(input_nodes)

    # first node of block
    n1 = Node('N1')
    for inpt in input_nodes:
        n1.add_op(Connect(cell.graph, inpt, n1))

    # second node of block
    mlp_op_list = list()
    mlp_op_list.append(Identity())
    mlp_op_list.append(MLP(1, 5, tf.nn.relu))
    mlp_op_list.append(MLP(1, 10, tf.nn.relu))
    mlp_op_list.append(MLP(1, 20, tf.nn.relu))
    mlp_op_list.append(MLP(1, 40, tf.nn.relu))
    mlp_op_list.append(MLP(1, 80, tf.nn.relu))
    mlp_op_list.append(MLP(1, 160, tf.nn.relu))
    mlp_op_list.append(MLP(1, 320, tf.nn.relu))
    n2 = Node('N2')
    for op in mlp_op_list:
        n2.add_op(op)

    # third
    n3 = Node('N3')
    drop_ops = []
    drop_ops.extend(dropout_ops)
    for op in drop_ops:
        n3.add_op(op)

    # 1 Blocks
    block1 = Block()
github deephyper / deephyper / deephyper / search / nas / model / baseline / mlp.py View on Github external
def create_dense_cell_toy(input_nodes):
    cell = Cell(input_nodes)

    n1 = Node('N1')
    n1.add_op(Connect(cell.graph, input_nodes[-1], n1))

    # first node of block
    mlp_op_list = list()
    mlp_op_list.append(MLP(1, 5, tf.nn.relu))
    mlp_op_list.append(MLP(1, 10, tf.nn.relu))
    mlp_op_list.append(MLP(1, 20, tf.nn.relu))
    mlp_op_list.append(MLP(1, 40, tf.nn.relu))
    mlp_op_list.append(MLP(1, 80, tf.nn.relu))
    mlp_op_list.append(MLP(1, 160, tf.nn.relu))
    mlp_op_list.append(MLP(1, 320, tf.nn.relu))
    n2 = Node('N2')
    for op in mlp_op_list:
        n2.add_op(op)

    # 1 Blocks
    block1 = Block()
    block1.add_node(n1)
    block1.add_node(n2)
    block1.add_edge(n1, n2)

    cell.add_block(block1)

    cell.set_outputs('stack', axis=1)
    return cell
github deephyper / deephyper / deephyper / search / nas / model / baseline / mlp.py View on Github external
"""
    cell = Cell(input_nodes)

    # first node of block
    n1 = Node('N1')
    for inpt in input_nodes:
        n1.add_op(Connect(cell.graph, inpt, n1))

    # second node of block
    mlp_op_list = list()
    mlp_op_list.append(Identity())
    mlp_op_list.append(MLP(1, 5, tf.nn.relu))
    mlp_op_list.append(MLP(1, 10, tf.nn.relu))
    mlp_op_list.append(MLP(1, 20, tf.nn.relu))
    mlp_op_list.append(MLP(1, 40, tf.nn.relu))
    mlp_op_list.append(MLP(1, 80, tf.nn.relu))
    mlp_op_list.append(MLP(1, 160, tf.nn.relu))
    mlp_op_list.append(MLP(1, 320, tf.nn.relu))
    n2 = Node('N2')
    for op in mlp_op_list:
        n2.add_op(op)

    # third
    n3 = Node('N3')
    drop_ops = []
    drop_ops.extend(dropout_ops)
    for op in drop_ops:
        n3.add_op(op)

    # 1 Blocks
    block1 = Block()
    block1.add_node(n1)
github deephyper / deephyper / deephyper / search / nas / model / baseline / mlp.py View on Github external
input_nodes (list(Node)): possible inputs of the current cell.

    Returns:
        Cell: a Cell instance.
    """
    cell = Cell(input_nodes)

    # first node of block
    n1 = Node('N1')
    for inpt in input_nodes:
        n1.add_op(Connect(cell.graph, inpt, n1))

    # second node of block
    mlp_op_list = list()
    mlp_op_list.append(Identity())
    mlp_op_list.append(MLP(1, 5, tf.nn.relu))
    mlp_op_list.append(MLP(1, 10, tf.nn.relu))
    mlp_op_list.append(MLP(1, 20, tf.nn.relu))
    mlp_op_list.append(MLP(1, 40, tf.nn.relu))
    mlp_op_list.append(MLP(1, 80, tf.nn.relu))
    mlp_op_list.append(MLP(1, 160, tf.nn.relu))
    mlp_op_list.append(MLP(1, 320, tf.nn.relu))
    n2 = Node('N2')
    for op in mlp_op_list:
        n2.add_op(op)

    # third
    n3 = Node('N3')
    drop_ops = []
    drop_ops.extend(dropout_ops)
    for op in drop_ops:
        n3.add_op(op)