Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
n_samples = _num_samples(X)
X, y = indexable(X, y)
if y is not None:
if len(y) != n_samples:
raise ValueError(
"Target variable (y) has a different number "
"of samples (%i) than data (X: %i samples)" % (len(y), n_samples)
)
cv = self.cv
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=RuntimeWarning)
# * y.shape[1]
creator.create("FitnessMax", base.Fitness, weights=(1.0,))
creator.create(
"Individual", list, est=clone(self.estimator), fitness=creator.FitnessMax
)
toolbox = base.Toolbox()
name_values, gene_type, maxints = _get_param_types_maxint(parameter_dict)
if self.gene_type is None:
self.gene_type = gene_type
if self.verbose:
print("Types %s and maxint %s detected" % (self.gene_type, maxints))
toolbox.register("individual", _initIndividual, creator.Individual, maxints=maxints)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
from deap import algorithms
from deap import base
from deap import benchmarks
from deap.benchmarks.tools import diversity, convergence
from deap import creator
from deap import tools
import os
from population import *
from network import Neterr
from chromosome import Chromosome, crossover
n_hidden = 100
indim = 9
outdim = 7
network_obj = Neterr(indim, outdim, n_hidden, np.random)
creator.create("FitnessMin", base.Fitness, weights=(-1.0, -1.0, 0.0, 0.0))
creator.create("Individual", Chromosome, fitness=creator.FitnessMin)
toolbox = base.Toolbox()
def minimize(individual):
outputarr = network_obj.feedforward_ne(individual)
neg_log_likelihood_val = give_neg_log_likelihood(outputarr, network_obj.resty)
mean_square_error_val = give_mse(outputarr, network_obj.resty)
false_positve_rat = give_false_positive_ratio(outputarr, network_obj.resty)
false_negative_rat = give_false_negative_ratio(outputarr, network_obj.resty)
return neg_log_likelihood_val, mean_square_error_val, false_positve_rat, false_negative_rat
from deap import tools
import os
from population import *
from network import Neterr
from chromosome import Chromosome, crossover
import traceback
n_hidden = 100
indim = 32
outdim = 5
#
network_obj_src = Neterr(indim, outdim, n_hidden, change_to_target = 0, rng = random)
network_obj_tar = Neterr(indim, outdim, n_hidden,change_to_target = 1, rng = random)
#creator.create("FitnessMin", base.Fitness, weights=(-1.0, -1.0, 0.0, 0.0))
creator.create("FitnessMin", base.Fitness, weights=(-1.0, -1.0, -1.0, -1.0))
creator.create("Individual", Chromosome, fitness=creator.FitnessMin)
print("here network object created")
toolbox = base.Toolbox()
def minimize_src(individual):
outputarr = network_obj_src.feedforward_ne(individual, final_activation=network.softmax)
neg_log_likelihood_val = give_neg_log_likelihood(outputarr, network_obj_src.resty)
mean_square_error_val = give_mse(outputarr, network_obj_src.resty)
mis_error = find_misclas_error(outputarr, network_obj_src.resty)
complexity = lambda ind: len(ind.conn_arr)
ind_complexity = complexity(individual)
# anyways not using these as you can see in 'creator.create("FitnessMin", base.Fitness, weights=(-1.0, -1.0, 0.0, 0.0))'
# return neg_log_likelihood_val, mean_square_error_val, false_positve_rat, false_negative_rat
return (neg_log_likelihood_val, mean_square_error_val, mis_error, ind_complexity)
**Keywords:** bit string, minimization, :class:`numpy.ndarray`
"""
import numpy
import random
from deap import algorithms
from deap import base
from deap import creator
from deap import tools
creator.create("FitnessMax", base.Fitness, weights=(1.0,))
creator.create("Individual", numpy.ndarray, fitness=creator.FitnessMax)
toolbox = base.Toolbox()
toolbox.register("attr_bool", random.randint, 0, 1)
toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_bool, n=100)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
def evalOneMax(individual):
return sum(individual),
toolbox.register("evaluate", evalOneMax)
toolbox.register("mate", tools.cxTwoPoints)
toolbox.register("mutate", tools.mutFlipBit, indpb=0.05)
toolbox.register("select", tools.selTournament, tournsize=3)
def main():
random.seed(64)
def dynamique_type():
"""
Static Method. Create dynamique Type used by deap.
This method needs to be called before any loading file.
Create static type:
- FitnessInd
- FitnessGroup
- Individual
Can be found at ```deap.creator.FitnessInd``` or \
```deap.creator.Individual```
"""
creator.create("FitnessInd", base.Fitness, weights=(1,))
creator.create("FitnessGroup", base.Fitness, weights=(1,))
creator.create("Individual", Ind, fitness_ind=creator.FitnessInd, fitness_group=creator.FitnessGroup)
def pareto_front(objectives, centroids, take, weights):
creator.create("FitnessMulti", base.Fitness, weights=weights)
creator.create("Individual", array.array, typecode='d', fitness=creator.FitnessMulti)
toolbox.register('evaluate', lambda x: x)
objectives = [creator.Individual(objectives[idx, :]) for idx in range(objectives.shape[0])]
objectives2 = []
for (idx, (obj, cen)) in enumerate(zip(objectives, centroids)):
obj.idx = idx
obj.cen = cen
obj.fitness.values = toolbox.evaluate(obj)
sel = selNSGA2(objectives, take)
return tuple((item.cen, item.idx) for item in sel)
## 2.1 Fitness
from deap import base
from deap import creator
## FitnessMin
creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
## FitnessMulti
creator.create("FitnessMulti", base.Fitness, weights=(-1.0, 1.0))
from deap import algorithms
from deap import base
from deap import benchmarks
from deap.benchmarks.tools import diversity, convergence
from deap import creator
from deap import tools
import os
from population import *
from network import Neterr
from chromosome import Chromosome, crossover
n_hidden = 100
indim = 8
outdim = 2
network_obj = Neterr(indim, outdim, n_hidden, np.random)
creator.create("FitnessMin", base.Fitness, weights=(-1.0, -1.0, 0.0, 0.0))
creator.create("Individual", Chromosome, fitness=creator.FitnessMin)
toolbox = base.Toolbox()
def minimize(individual):
outputarr = network_obj.feedforward_ne(individual)
neg_log_likelihood_val = give_neg_log_likelihood(outputarr, network_obj.resty)
mean_square_error_val = give_mse(outputarr, network_obj.resty)
false_positve_rat = give_false_positive_ratio(outputarr, network_obj.resty)
false_negative_rat = give_false_negative_ratio(outputarr, network_obj.resty)
return neg_log_likelihood_val, mean_square_error_val, false_positve_rat, false_negative_rat
ind1_1[cxpoint:], ind2_1[cxpoint:] = ind2_1[cxpoint:], ind1_1[cxpoint:]
ind1[:] = ind1_0 + ind1_1
ind2[:] = ind2_0 + ind2_1
return ind1, ind2
###
# Genetic Algorithm
####
# define individual, population, etc
deap.creator.create("FitnessMax", deap.base.Fitness, weights=(1.0, -1.0, -1.0))
deap.creator.create("Individual", list, fitness=deap.creator.FitnessMax)
toolbox = deap.base.Toolbox()
toolbox.register("rand_angle", random.randint, 0, 359)
toolbox.register("rand_rotamer", random.randint, 0, 8)
toolbox.register("individual", deap.tools.initCycle,
deap.creator.Individual, [toolbox.rand_angle] * len(bonds) +
[toolbox.rand_rotamer] * len(residues), n=1)
toolbox.register("population", deap.tools.initRepeat,
list, toolbox.individual)
LOW_BOUND = [0]*(len(bonds)+len(residues))
UP_BOUND = [360]*len(bonds) + [8]*len(residues)
toolbox.register("evaluate", evalCoord)
toolbox.register("mate", hetCxOnePoint, bound=len(bonds))
toolbox.register("mutate", deap.tools.mutPolynomialBounded,
eta = 20.0, low = LOW_BOUND, up = UP_BOUND, indpb=0.05)
toolbox.register("select", deap.tools.selNSGA2)
import os, sys, time
import cdrsoxs, fitting, simulation
import pyqtgraph as pg
import numpy as np
from xicam.plugins import base, widgets
from xicam import threads
from modpkgs import guiinvoker
from functools import partial
from PySide import QtGui, QtCore
import multiprocessing
import deap.base as deap_base
import deap.base as deap_base
from deap import creator
from scipy import interpolate
creator.create('FitnessMin', deap_base.Fitness, weights=(-1.0,)) # want to minimize fitness
creator.create('Individual', list, fitness=creator.FitnessMin)
class plugin(base.plugin):
name = "CDSOXS"
def __init__(self, *args, **kwargs):
self.centerwidget = QtGui.QTabWidget()
self.rightwidget = self.parametertree = pg.parametertree.ParameterTree()
self.topwidget = QtGui.QTabWidget()
self.centerwidget.setDocumentMode(True)
self.centerwidget.setTabsClosable(True)
self.centerwidget.tabCloseRequested.connect(self.tabClose)
self.centerwidget.currentChanged.connect(self.currentChanged)
self.bottomwidget = CDLineProfileWidget()