Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
res3b_branch2c.parameter.biasesInitializer = uniform.Batch(0, 0, fptype=np.float32)
res3b_branch2c_id = topology.add(res3b_branch2c)
bn3b_branch2c = batch_normalization.Batch(fptype=np.float32)
bn3b_branch2c_id = topology.add(bn3b_branch2c)
res3b = eltwise_sum.Batch(fptype=np.float32)
res3b_id = topology.add(res3b)
res3b_relu = relu.Batch(fptype=np.float32)
res3b_relu_id = topology.add(res3b_relu)
res3b_relu_split6 = split.Batch(2, 2, fptype=np.float32)
res3b_relu_split6_id = topology.add(res3b_relu_split6)
res3c_branch2a = convolution2d.Batch(fptype=np.float32)
res3c_branch2a.parameter.nKernels = 128
res3c_branch2a.parameter.kernelSizes = convolution2d.KernelSizes(1, 1)
res3c_branch2a.parameter.strides = convolution2d.Strides(1, 1)
res3c_branch2a.parameter.weightsInitializer = xavier.Batch(fptype=np.float32)
res3c_branch2a.parameter.biasesInitializer = uniform.Batch(0, 0, fptype=np.float32)
res3c_branch2a_id = topology.add(res3c_branch2a)
bn3c_branch2a = batch_normalization.Batch(fptype=np.float32)
bn3c_branch2a_id = topology.add(bn3c_branch2a)
res3c_branch2a_relu = relu.Batch(fptype=np.float32)
res3c_branch2a_relu_id = topology.add(res3c_branch2a_relu)
res3c_branch2b = convolution2d.Batch(fptype=np.float32)
res3c_branch2b.parameter.nKernels = 128
res3c_branch2b.parameter.kernelSizes = convolution2d.KernelSizes(3, 3)
res5a_branch2c.parameter.biasesInitializer = uniform.Batch(0, 0, fptype=np.float32)
res5a_branch2c_id = topology.add(res5a_branch2c)
bn5a_branch2c = batch_normalization.Batch(fptype=np.float32)
bn5a_branch2c_id = topology.add(bn5a_branch2c)
res5a = eltwise_sum.Batch(fptype=np.float32)
res5a_id = topology.add(res5a)
res5a_relu = relu.Batch(fptype=np.float32)
res5a_relu_id = topology.add(res5a_relu)
res5a_relu_split15 = split.Batch(2, 2, fptype=np.float32)
res5a_relu_split15_id = topology.add(res5a_relu_split15)
res5b_branch2a = convolution2d.Batch(fptype=np.float32)
res5b_branch2a.parameter.nKernels = 512
res5b_branch2a.parameter.kernelSizes = convolution2d.KernelSizes(1, 1)
res5b_branch2a.parameter.strides = convolution2d.Strides(1, 1)
res5b_branch2a.parameter.weightsInitializer = xavier.Batch(fptype=np.float32)
res5b_branch2a.parameter.biasesInitializer = uniform.Batch(0, 0, fptype=np.float32)
res5b_branch2a_id = topology.add(res5b_branch2a)
bn5b_branch2a = batch_normalization.Batch(fptype=np.float32)
bn5b_branch2a_id = topology.add(bn5b_branch2a)
res5b_branch2a_relu = relu.Batch(fptype=np.float32)
res5b_branch2a_relu_id = topology.add(res5b_branch2a_relu)
res5b_branch2b = convolution2d.Batch(fptype=np.float32)
res5b_branch2b.parameter.nKernels = 512
res5b_branch2b.parameter.kernelSizes = convolution2d.KernelSizes(3, 3)
res3a_branch2c.parameter.biasesInitializer = uniform.Batch(0, 0, fptype=np.float32)
res3a_branch2c_id = topology.add(res3a_branch2c)
bn3a_branch2c = batch_normalization.Batch(fptype=np.float32)
bn3a_branch2c_id = topology.add(bn3a_branch2c)
res3a = eltwise_sum.Batch(fptype=np.float32)
res3a_id = topology.add(res3a)
res3a_relu = relu.Batch(fptype=np.float32)
res3a_relu_id = topology.add(res3a_relu)
res3a_relu_split5 = split.Batch(2, 2, fptype=np.float32)
res3a_relu_split5_id = topology.add(res3a_relu_split5)
res3b_branch2a = convolution2d.Batch(fptype=np.float32)
res3b_branch2a.parameter.nKernels = 128
res3b_branch2a.parameter.kernelSizes = convolution2d.KernelSizes(1, 1)
res3b_branch2a.parameter.strides = convolution2d.Strides(1, 1)
res3b_branch2a.parameter.weightsInitializer = xavier.Batch(fptype=np.float32)
res3b_branch2a.parameter.biasesInitializer = uniform.Batch(0, 0, fptype=np.float32)
res3b_branch2a_id = topology.add(res3b_branch2a)
bn3b_branch2a = batch_normalization.Batch(fptype=np.float32)
bn3b_branch2a_id = topology.add(bn3b_branch2a)
res3b_branch2a_relu = relu.Batch(fptype=np.float32)
res3b_branch2a_relu_id = topology.add(res3b_branch2a_relu)
res3b_branch2b = convolution2d.Batch(fptype=np.float32)
res3b_branch2b.parameter.nKernels = 128
res3b_branch2b.parameter.kernelSizes = convolution2d.KernelSizes(3, 3)
res3d_branch2b = convolution2d.Batch(fptype=np.float32)
res3d_branch2b.parameter.nKernels = 128
res3d_branch2b.parameter.kernelSizes = convolution2d.KernelSizes(3, 3)
res3d_branch2b.parameter.strides = convolution2d.Strides(1, 1)
res3d_branch2b.parameter.paddings = convolution2d.Paddings(1, 1)
res3d_branch2b.parameter.weightsInitializer = xavier.Batch(fptype=np.float32)
res3d_branch2b.parameter.biasesInitializer = uniform.Batch(0, 0, fptype=np.float32)
res3d_branch2b_id = topology.add(res3d_branch2b)
bn3d_branch2b = batch_normalization.Batch(fptype=np.float32)
bn3d_branch2b_id = topology.add(bn3d_branch2b)
res3d_branch2b_relu = relu.Batch(fptype=np.float32)
res3d_branch2b_relu_id = topology.add(res3d_branch2b_relu)
res3d_branch2c = convolution2d.Batch(fptype=np.float32)
res3d_branch2c.parameter.nKernels = 512
res3d_branch2c.parameter.kernelSizes = convolution2d.KernelSizes(1, 1)
res3d_branch2c.parameter.strides = convolution2d.Strides(1, 1)
res3d_branch2c.parameter.weightsInitializer = xavier.Batch(fptype=np.float32)
res3d_branch2c.parameter.biasesInitializer = uniform.Batch(0, 0, fptype=np.float32)
res3d_branch2c_id = topology.add(res3d_branch2c)
bn3d_branch2c = batch_normalization.Batch(fptype=np.float32)
bn3d_branch2c_id = topology.add(bn3d_branch2c)
res3d = eltwise_sum.Batch(fptype=np.float32)
res3d_id = topology.add(res3d)
res3d_relu = relu.Batch(fptype=np.float32)
res3d_relu_id = topology.add(res3d_relu)
res2a_branch2a = convolution2d.Batch(fptype=np.float32)
res2a_branch2a.parameter.nKernels = 64
res2a_branch2a.parameter.kernelSizes = convolution2d.KernelSizes(1, 1)
res2a_branch2a.parameter.strides = convolution2d.Strides(1, 1)
res2a_branch2a.parameter.weightsInitializer = xavier.Batch(fptype=np.float32)
res2a_branch2a.parameter.biasesInitializer = uniform.Batch(0, 0, fptype=np.float32)
res2a_branch2a_id = topology.add(res2a_branch2a)
bn2a_branch2a = batch_normalization.Batch(fptype=np.float32)
bn2a_branch2a_id = topology.add(bn2a_branch2a)
res2a_branch2a_relu = relu.Batch(fptype=np.float32)
res2a_branch2a_relu_id = topology.add(res2a_branch2a_relu)
res2a_branch2b = convolution2d.Batch(fptype=np.float32)
res2a_branch2b.parameter.nKernels = 64
res2a_branch2b.parameter.kernelSizes = convolution2d.KernelSizes(3, 3)
res2a_branch2b.parameter.strides = convolution2d.Strides(1, 1)
res2a_branch2b.parameter.paddings = convolution2d.Paddings(1, 1)
res2a_branch2b.parameter.weightsInitializer = xavier.Batch(fptype=np.float32)
res2a_branch2b.parameter.biasesInitializer = uniform.Batch(0, 0, fptype=np.float32)
res2a_branch2b_id = topology.add(res2a_branch2b)
bn2a_branch2b = batch_normalization.Batch(fptype=np.float32)
bn2a_branch2b_id = topology.add(bn2a_branch2b)
res2a_branch2b_relu = relu.Batch(fptype=np.float32)
res2a_branch2b_relu_id = topology.add(res2a_branch2b_relu)
res2a_branch2c = convolution2d.Batch(fptype=np.float32)
res2a_branch2c.parameter.nKernels = 256
res4f_branch2b = convolution2d.Batch(fptype=np.float32)
res4f_branch2b.parameter.nKernels = 256
res4f_branch2b.parameter.kernelSizes = convolution2d.KernelSizes(3, 3)
res4f_branch2b.parameter.strides = convolution2d.Strides(1, 1)
res4f_branch2b.parameter.paddings = convolution2d.Paddings(1, 1)
res4f_branch2b.parameter.weightsInitializer = xavier.Batch(fptype=np.float32)
res4f_branch2b.parameter.biasesInitializer = uniform.Batch(0, 0, fptype=np.float32)
res4f_branch2b_id = topology.add(res4f_branch2b)
bn4f_branch2b = batch_normalization.Batch(fptype=np.float32)
bn4f_branch2b_id = topology.add(bn4f_branch2b)
res4f_branch2b_relu = relu.Batch(fptype=np.float32)
res4f_branch2b_relu_id = topology.add(res4f_branch2b_relu)
res4f_branch2c = convolution2d.Batch(fptype=np.float32)
res4f_branch2c.parameter.nKernels = 1024
res4f_branch2c.parameter.kernelSizes = convolution2d.KernelSizes(1, 1)
res4f_branch2c.parameter.strides = convolution2d.Strides(1, 1)
res4f_branch2c.parameter.weightsInitializer = xavier.Batch(fptype=np.float32)
res4f_branch2c.parameter.biasesInitializer = uniform.Batch(0, 0, fptype=np.float32)
res4f_branch2c_id = topology.add(res4f_branch2c)
bn4f_branch2c = batch_normalization.Batch(fptype=np.float32)
bn4f_branch2c_id = topology.add(bn4f_branch2c)
res4f = eltwise_sum.Batch(fptype=np.float32)
res4f_id = topology.add(res4f)
res4f_relu = relu.Batch(fptype=np.float32)
res4f_relu_id = topology.add(res4f_relu)
res3c_branch2c.parameter.biasesInitializer = uniform.Batch(0, 0, fptype=np.float32)
res3c_branch2c_id = topology.add(res3c_branch2c)
bn3c_branch2c = batch_normalization.Batch(fptype=np.float32)
bn3c_branch2c_id = topology.add(bn3c_branch2c)
res3c = eltwise_sum.Batch(fptype=np.float32)
res3c_id = topology.add(res3c)
res3c_relu = relu.Batch(fptype=np.float32)
res3c_relu_id = topology.add(res3c_relu)
res3c_relu_split7 = split.Batch(2, 2, fptype=np.float32)
res3c_relu_split7_id = topology.add(res3c_relu_split7)
res3d_branch2a = convolution2d.Batch(fptype=np.float32)
res3d_branch2a.parameter.nKernels = 128
res3d_branch2a.parameter.kernelSizes = convolution2d.KernelSizes(1, 1)
res3d_branch2a.parameter.strides = convolution2d.Strides(1, 1)
res3d_branch2a.parameter.weightsInitializer = xavier.Batch(fptype=np.float32)
res3d_branch2a.parameter.biasesInitializer = uniform.Batch(0, 0, fptype=np.float32)
res3d_branch2a_id = topology.add(res3d_branch2a)
bn3d_branch2a = batch_normalization.Batch(fptype=np.float32)
bn3d_branch2a_id = topology.add(bn3d_branch2a)
res3d_branch2a_relu = relu.Batch(fptype=np.float32)
res3d_branch2a_relu_id = topology.add(res3d_branch2a_relu)
res3d_branch2b = convolution2d.Batch(fptype=np.float32)
res3d_branch2b.parameter.nKernels = 128
res3d_branch2b.parameter.kernelSizes = convolution2d.KernelSizes(3, 3)
res4a_branch2b = convolution2d.Batch(fptype=np.float32)
res4a_branch2b.parameter.nKernels = 256
res4a_branch2b.parameter.kernelSizes = convolution2d.KernelSizes(3, 3)
res4a_branch2b.parameter.strides = convolution2d.Strides(1, 1)
res4a_branch2b.parameter.paddings = convolution2d.Paddings(1, 1)
res4a_branch2b.parameter.weightsInitializer = xavier.Batch(fptype=np.float32)
res4a_branch2b.parameter.biasesInitializer = uniform.Batch(0, 0, fptype=np.float32)
res4a_branch2b_id = topology.add(res4a_branch2b)
bn4a_branch2b = batch_normalization.Batch(fptype=np.float32)
bn4a_branch2b_id = topology.add(bn4a_branch2b)
res4a_branch2b_relu = relu.Batch(fptype=np.float32)
res4a_branch2b_relu_id = topology.add(res4a_branch2b_relu)
res4a_branch2c = convolution2d.Batch(fptype=np.float32)
res4a_branch2c.parameter.nKernels = 1024
res4a_branch2c.parameter.kernelSizes = convolution2d.KernelSizes(1, 1)
res4a_branch2c.parameter.strides = convolution2d.Strides(1, 1)
res4a_branch2c.parameter.weightsInitializer = xavier.Batch(fptype=np.float32)
res4a_branch2c.parameter.biasesInitializer = uniform.Batch(0, 0, fptype=np.float32)
res4a_branch2c_id = topology.add(res4a_branch2c)
bn4a_branch2c = batch_normalization.Batch(fptype=np.float32)
bn4a_branch2c_id = topology.add(bn4a_branch2c)
res4a = eltwise_sum.Batch(fptype=np.float32)
res4a_id = topology.add(res4a)
res4a_relu = relu.Batch(fptype=np.float32)
res4a_relu_id = topology.add(res4a_relu)
res3a_branch2a = convolution2d.Batch(fptype=np.float32)
res3a_branch2a.parameter.nKernels = 128
res3a_branch2a.parameter.kernelSizes = convolution2d.KernelSizes(1, 1)
res3a_branch2a.parameter.strides = convolution2d.Strides(2, 2)
res3a_branch2a.parameter.weightsInitializer = xavier.Batch(fptype=np.float32)
res3a_branch2a.parameter.biasesInitializer = uniform.Batch(0, 0, fptype=np.float32)
res3a_branch2a_id = topology.add(res3a_branch2a)
bn3a_branch2a = batch_normalization.Batch(fptype=np.float32)
bn3a_branch2a_id = topology.add(bn3a_branch2a)
res3a_branch2a_relu = relu.Batch(fptype=np.float32)
res3a_branch2a_relu_id = topology.add(res3a_branch2a_relu)
res3a_branch2b = convolution2d.Batch(fptype=np.float32)
res3a_branch2b.parameter.nKernels = 128
res3a_branch2b.parameter.kernelSizes = convolution2d.KernelSizes(3, 3)
res3a_branch2b.parameter.strides = convolution2d.Strides(1, 1)
res3a_branch2b.parameter.paddings = convolution2d.Paddings(1, 1)
res3a_branch2b.parameter.weightsInitializer = xavier.Batch(fptype=np.float32)
res3a_branch2b.parameter.biasesInitializer = uniform.Batch(0, 0, fptype=np.float32)
res3a_branch2b_id = topology.add(res3a_branch2b)
bn3a_branch2b = batch_normalization.Batch(fptype=np.float32)
bn3a_branch2b_id = topology.add(bn3a_branch2b)
res3a_branch2b_relu = relu.Batch(fptype=np.float32)
res3a_branch2b_relu_id = topology.add(res3a_branch2b_relu)
res3a_branch2c = convolution2d.Batch(fptype=np.float32)
res3a_branch2c.parameter.nKernels = 512
# Create convolution layer
convolution1 = convolution2d.Batch()
convolution1.parameter.kernelSizes = convolution2d.KernelSizes(3, 3)
convolution1.parameter.strides = convolution2d.Strides(1, 1)
convolution1.parameter.nKernels = 32
convolution1.parameter.weightsInitializer = initializers.xavier.Batch()
convolution1.parameter.biasesInitializer = initializers.uniform.Batch(0, 0)
# Create pooling layer
maxpooling1 = maximum_pooling2d.Batch(4)
maxpooling1.parameter.kernelSizes = pooling2d.KernelSizes(2, 2)
maxpooling1.parameter.paddings = pooling2d.Paddings(0, 0)
maxpooling1.parameter.strides = pooling2d.Strides(2, 2)
# Create convolution layer
convolution2 = convolution2d.Batch()
convolution2.parameter.kernelSizes = convolution2d.KernelSizes(5, 5)
convolution2.parameter.strides = convolution2d.Strides(1, 1)
convolution2.parameter.nKernels = 64
convolution2.parameter.weightsInitializer = initializers.xavier.Batch()
convolution2.parameter.biasesInitializer = initializers.uniform.Batch(0, 0)
# Create pooling layer
maxpooling2 = maximum_pooling2d.Batch(4)
maxpooling2.parameter.kernelSizes = pooling2d.KernelSizes(2, 2)
maxpooling2.parameter.paddings = pooling2d.Paddings(0, 0)
maxpooling2.parameter.strides = pooling2d.Strides(2, 2)
# Create fullyconnected layer
fullyconnected3 = fullyconnected.Batch(256)
fullyconnected3.parameter.weightsInitializer = initializers.xavier.Batch()
fullyconnected3.parameter.biasesInitializer = initializers.uniform.Batch(0, 0)