How to use the cloudpickle.dump function in cloudpickle

To help you get started, we’ve selected a few cloudpickle examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github PrefectHQ / prefect / tests / environments / execution / test_dask_k8s_environment.py View on Github external
flow_runner = MagicMock()
    monkeypatch.setattr(
        "prefect.engine.get_default_flow_runner_class",
        MagicMock(return_value=flow_runner),
    )

    kube_cluster = MagicMock()
    monkeypatch.setattr("dask_kubernetes.KubeCluster", kube_cluster)

    with tempfile.TemporaryDirectory() as directory:
        with open(os.path.join(directory, "flow_env.prefect"), "w+") as env:
            flow = prefect.Flow("test")
            flow_path = os.path.join(directory, "flow_env.prefect")
            with open(flow_path, "wb") as f:
                cloudpickle.dump(flow, f)

        with set_temporary_config({"cloud.auth_token": "test"}):
            with prefect.context(
                flow_file_path=os.path.join(directory, "flow_env.prefect")
            ):
                environment.run_flow()

        assert flow_runner.call_args[1]["flow"].name == "test"

    assert start_func.called
    assert exit_func.called
github explosion / spaCy / tests / test_pickle.py View on Github external
def test_pickle_english(EN):
    file_ = io.BytesIO()
    cloudpickle.dump(EN, file_)

    file_.seek(0)

    loaded = pickle.load(file_)
github carpedm20 / SPIRAL-tensorflow / utils / io.py View on Github external
def _dump_pickle(path, data):
    path = str(path)
    with open(path, 'wb') as f, Timer(f"Dumped pickle: {path}"):
        cloudpickle.dump(data, f)
github botfront / rasa-for-botfront / rasa_nlu / classifiers / sklearn_intent_classifier.py View on Github external
def persist(self, model_dir):
        # type: (Text) -> Dict[Text, Any]
        """Persist this model into the passed directory. Returns the metadata necessary to load the model again."""

        import cloudpickle

        classifier_file = os.path.join(model_dir, "intent_classifier.pkl")
        with io.open(classifier_file, 'wb') as f:
            cloudpickle.dump(self, f)

        return {
            "intent_classifier_sklearn": "intent_classifier.pkl"
        }
github Rapid-Design-of-Systems-Laboratory / beluga / beluga / utils / utils.py View on Github external
if bvp is not None:
        save_dict['bvp'] = bvp

    if bvp_solver is not None:
        assert issubclass(bvp_solver.__class__, beluga.bvpsol.BaseAlgorithm), 'bvp_solver should be subclass ' \
                                                                              'of beluga.bvpsol.BaseAlgorithm'
        save_dict['bvp solver'] = bvp_solver

    if sol_set is not None:
        assert all([sol.__class__ is beluga.ivpsol.ivpsol.Trajectory for cont_set in sol_set for sol in cont_set]),\
            'all solutions in sol_set should be of class beluga.ivpsol.ivpsol.Trajectory'
        save_dict['solutions'] = sol_set

    with open(filename, 'wb') as file:
        pickle.dump(save_dict, file)
github PrefectHQ / prefect / src / prefect / core / flow.py View on Github external
Args:
            - fpath (str, optional): the filepath where your Flow will be saved; defaults to
                `~/.prefect/flows/FLOW-NAME.prefect`

        Returns:
            - str: the full location the Flow was saved to
        """
        if fpath is None:
            path = "{home}/flows".format(home=prefect.context.config.home_dir)
            fpath = Path(os.path.expanduser(path)) / "{}.prefect".format(  # type: ignore
                slugify(self.name)
            )
            assert fpath is not None  # mypy assert
            fpath.parent.mkdir(exist_ok=True, parents=True)
        with open(str(fpath), "wb") as f:
            cloudpickle.dump(self, f)

        return str(fpath)
github studywolf / blog / SymPy / ur5.py View on Github external
if os.path.isfile('%s/Mq' % self.config_folder):
            Mq = cloudpickle.load(open('%s/Mq' % self.config_folder, 'rb'))
        else:
            # get the Jacobians for each link's COM
            J = [self._calc_J('link%s' % ii, x=[0, 0, 0], lambdify=False)
                 for ii in range(self.num_links)]

            # transform each inertia matrix into joint space
            # sum together the effects of arm segments' inertia on each motor
            Mq = sp.zeros(self.num_joints)
            for ii in range(self.num_links):
                Mq += J[ii].T * self._M[ii] * J[ii]
            Mq = sp.Matrix(Mq)

            # save to file
            cloudpickle.dump(Mq, open('%s/Mq' % self.config_folder, 'wb'))

        if lambdify is False:
            return Mq
        return sp.lambdify(self.q + self.x, Mq)
github civisanalytics / civis-python / civis / run_joblib_func.py View on Github external
with _joblib_para_backend(_backend):
                    result = func()
    except Exception:
        print("Error! Attempting to record exception.")
        # Wrap the exception in joblib's TransportableException
        # so that joblib can properly display the results.
        e_type, e_value, e_tb = sys.exc_info()
        text = format_exc(e_type, e_value, e_tb, context=10, tb_offset=1)
        result = TransportableException(text, e_type)
        raise
    finally:
        # Serialize the result and upload it to the Files API.
        if result is not None:
            # If the function exits without erroring, we may not have a result.
            result_buffer = BytesIO()
            cloudpickle.dump(result, result_buffer, pickle.HIGHEST_PROTOCOL)
            result_buffer.seek(0)
            output_name = "Results from Joblib job {} / run {}".format(job_id,
                                                                       run_id)
            output_file_id = _robust_file_to_civis(result_buffer, output_name,
                                                   n_retries=5, delay=0.5,
                                                   expires_at=expires_at,
                                                   client=client)
            client.scripts.post_containers_runs_outputs(job_id, run_id,
                                                        'File', output_file_id)
            print("Results output to file ID: {}".format(output_name,
                                                         output_file_id))
github RimoChan / Librian / librian / librian本體 / librian虛擬機 / 讀者.py View on Github external
def 存檔(self, 路徑, 存檔信息=None):
        虛擬機狀態 = {
            '讀者狀態': self.狀態,
            '角色表': 角色.角色表,
            '鏡頭對應': 鏡頭.鏡頭對應,
            '劇本棧': self.劇本棧,
            '箱庭': self.箱庭,
        }
        with open(路徑, 'wb') as f:
            pickle.dump({
                '虛擬機狀態': 虛擬機狀態,
                '存檔信息': 存檔信息
            }, f)
github studywolf / blog / SymPy / ur5.py View on Github external
"""

        # check to see if we have our transformation saved in file
        if (os.path.isfile('%s/%s.T_inv' % (self.config_folder,
                                                name))):
            T_inv = cloudpickle.load(open('%s/%s.T_inv' %
                                          (self.config_folder, name), 'rb'))
        else:
            T = self._calc_T(name=name)
            rotation_inv = T[:3, :3].T
            translation_inv = -rotation_inv * T[:3, 3]
            T_inv = rotation_inv.row_join(translation_inv).col_join(
                sp.Matrix([[0, 0, 0, 1]]))

            # save to file
            cloudpickle.dump(T_inv, open('%s/%s.T_inv' %
                                         (self.config_folder, name), 'wb'))

        if lambdify is False:
            return T_inv
        return sp.lambdify(self.q + self.x, T_inv)