Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def __init__(self, scope='trivial', nb_classes=2, **kwargs):
del kwargs
Model.__init__(self, scope, nb_classes, locals())
def __init__(self, scope='simple', nb_classes=2, **kwargs):
del kwargs
Model.__init__(self, scope, nb_classes, locals())
def __init__(self, scope='simple_spatial', nb_classes=2, **kwargs):
del kwargs
Model.__init__(self, scope, nb_classes, locals())
def __init__(self, scope, nb_classes, nb_filters, **kwargs):
del kwargs
Model.__init__(self, scope, nb_classes, locals())
self.nb_filters = nb_filters
self.fprop(self.make_input_placeholder())
self.params = self.get_params()
def __init__(self, scope, nb_classes, nb_filters, **kwargs):
del kwargs
Model.__init__(self, scope, nb_classes, locals())
self.nb_filters = nb_filters
# Do a dummy run of fprop to make sure the variables are created from
# the start
self.fprop(tf.placeholder(tf.float32, [128, 28, 28, 1]))
# Put a reference to the params in self so that the params get pickled
self.params = selZf.get_params()
def __init__(self, scope, nb_classes, nb_filters=200, **kwargs):
del kwargs
Model.__init__(self, scope, nb_classes, locals())
self.nb_filters = nb_filters
def __init__(self, img_in, nb_classes, scope, noisy=False, reuse=False, concat_softmax=False, **kwargs):
del kwargs
self.scope = scope
self.num_actions = nb_classes
self.noisy = noisy
#self.reuse = reuse
self.reuse = tf.AUTO_REUSE
self.concat_softmax = concat_softmax
#self.img_in = img_in
Model.__init__(self, scope, nb_classes, locals())
#self.fprop(tf.placeholder(tf.float32, [128, 28, 28, 1]))
#self.fprop (img_in)
#self.needs_dummy_fprop = True
self.fprop (img_in)
train_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=self.scope+"/convnet")
train_vars += tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=self.scope+"/action_value")
self.params = train_vars
#self.params = self.get_params()
def __init__(self, scope, nb_classes, nb_filters=200, **kwargs):
del kwargs
Model.__init__(self, scope, nb_classes, locals())
self.nb_filters = nb_filters
def __init__(self, nb_classes=10):
# NOTE: for compatibility with Madry Lab downloadable checkpoints,
# we cannot use scopes, give these variables names, etc.
self.W_conv1 = self._weight_variable([5, 5, 1, 32])
self.b_conv1 = self._bias_variable([32])
self.W_conv2 = self._weight_variable([5, 5, 32, 64])
self.b_conv2 = self._bias_variable([64])
self.W_fc1 = self._weight_variable([7 * 7 * 64, 1024])
self.b_fc1 = self._bias_variable([1024])
self.W_fc2 = self._weight_variable([1024, nb_classes])
self.b_fc2 = self._bias_variable([nb_classes])
Model.__init__(self, '', nb_classes, {})