How to use the bigml.fields.Fields function in bigml

To help you get started, we’ve selected a few bigml examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github bigmlcom / bigmler / bigmler / processing / clusters.py View on Github external
def get_cluster_fields(cluster, csv_properties, args):
    """Retrieves fields info from cluster resource

    """
    if not csv_properties:
        csv_properties = {}
    csv_properties.update(verbose=True)
    if args.user_locale is None:
        args.user_locale = cluster['object'].get('locale', None)
    csv_properties.update(data_locale=args.user_locale)
    csv_properties.update(missing_tokens=DEFAULT_MISSING_TOKENS)
    return Fields(cluster['object']['clusters']['fields'], **csv_properties)
github bigmlcom / bigmler / bigmler / processing / linearregressions.py View on Github external
def get_linear_fields(linear_regression, csv_properties, args):
    """Retrieves fields info from linear regression resource

    """
    if not csv_properties:
        csv_properties = {}
    csv_properties.update(verbose=True)
    if args.user_locale is None:
        args.user_locale = linear_regression['object'].get('locale', None)
    csv_properties.update(data_locale=args.user_locale)
    csv_properties.update(missing_tokens=DEFAULT_MISSING_TOKENS)
    return Fields(linear_regression['object'][ \
        'linear_regression']['fields'], \
        **csv_properties)
github bigmlcom / bigmler / bigmler / processing / fusion.py View on Github external
number_of_fusions, debug=args.debug)
            if not resume:
                message = u.dated("Found %s fusions out of %s."
                                  " Resuming.\n"
                                  % (len(fusion_ids),
                                     number_of_fusions))
                u.log_message(message, log_file=session_file,
                              console=args.verbosity)

            fusion = fusion_ids[0]
            first_model_id = api.get_fusion(fusion)[ \
                "object"]["fusion"]["models"][0]["id"]
            first_model_kind = api.get_fusion(fusion)[ \
                "object"]["fusion"]["models"][0]["kind"]
            first_model = api.getters[first_model_kind](first_model_id)
            fields = Fields(first_model)
            number_of_fusions -= len(fusion_ids)

        fusion_args = r.set_fusion_args( \
            args, fields)
        fusion = \
            r.create_fusion( \
            args.fusion_models_, fusion, fusion_args, \
            args, api, path, session_file, log)

    # If a fusion is provided, we use it.
    elif args.fusion:
        fusion_ids = [args.fusion]
        fusion = fusion_ids[0]

    elif args.fusion or args.fusion_tag:
        fusion = fusion_ids[0]
github bigmlcom / bigmler / bigmler / processing / datasets.py View on Github external
def get_fields_structure(resource, csv_properties):
    """Builds a Fields object from the fields information in the resource

    """
    if not csv_properties and 'locale' in resource['object']:
        csv_properties = {
            'data_locale': resource['object']['locale']}
    fields = Fields(resource['object']['fields'], **csv_properties)
    return fields
github bigmlcom / bigmler / bigmler / dispatcher.py View on Github external
# list of datasets
    if args.multi_dataset:
        dataset, resume = pd.create_new_dataset(
            datasets, api, args, resume, fields=fields,
            session_file=session_file, path=path, log=log)
        datasets = [dataset]

    # Check if the dataset has a generators file associated with it, and
    # generate a new dataset with the specified field structure. Also
    # if the --to-dataset flag is used to clone or sample the original dataset
    if args.new_fields or (args.sample_rate != 1 and args.no_model) or \
            (args.lisp_filter or args.json_filter) and not has_source(args):
        if fields is None:
            if isinstance(dataset, basestring):
                dataset = u.check_resource(dataset, api=api)
            fields = Fields(dataset, csv_properties)
        args.objective_id_ = get_objective_id(args, fields)
        args.objective_name_ = fields.field_name(args.objective_id_)
        dataset, resume = pd.create_new_dataset(
            dataset, api, args, resume, fields=fields,
            session_file=session_file, path=path, log=log)
        datasets[0] = dataset
        # rebuild fields structure for new ids and fields
        csv_properties.update({'objective_field': args.objective_name_,
                               'objective_field_present': True})
        fields = pd.get_fields_structure(dataset, csv_properties)
        args.objective_id_ = get_objective_id(args, fields)
    if args.multi_label and dataset and multi_label_data is None:
        multi_label_data = l.get_multi_label_data(dataset)
        (args.objective_field,
         labels,
         all_labels,
github bigmlcom / bigmler / bigmler / reify / restutils.py View on Github external
resource_type = get_resource_type(resource)
    # for sources, extract all the updatable attributes
    if resource_type == 'source':
        updatable_attrs = SOURCE_UPDATABLE
        for field_id in resource_fields.keys():
            field_opts = {}
            field = resource_fields[field_id]
            for attribute in updatable_attrs:
                if field.get(attribute):
                    field_opts.update({attribute: field[attribute]})
            if field_opts != {}:
                fields_attributes.update({field_id: field_opts})
        return fields_attributes
    # for the rest of resources, check which attributes changed
    if referrer:
        referrer_fields = Fields(
            {'resource': referrer['resource'], 'object': referrer}).fields
        for field_id in resource_fields.keys():
            field_opts = {}
            if not field_id in referrer_fields.keys():
                continue
            field = resource_fields[field_id]

            for attribute in updatable_attrs:
                ref_values = ["", referrer_fields[field_id].get(attribute, "")]
                if not field.get(attribute, "") in ref_values:
                    field_opts.update({attribute: field[attribute]})

            if field_opts != {}:
                fields_attributes.update({field_id: field_opts})
    return fields_attributes
github bigmlcom / bigmler / bigmler / processing / fusion.py View on Github external
def get_fusion_fields(fusion, csv_properties, args):
    """Retrieves fields info from Fusion resource

    """
    args.retrieve_api_.ok(fusion)
    if not csv_properties:
        csv_properties = {}
    csv_properties.update(verbose=True)
    csv_properties.update(missing_tokens=DEFAULT_MISSING_TOKENS)
    return Fields(fusion['object']['fusion']['fields'], \
        **csv_properties)
github bigmlcom / bigmler / bigmler / processing / anomalies.py View on Github external
def get_anomaly_fields(anomaly, csv_properties, args):
    """Retrieves fields info from anomaly resource

    """
    if not csv_properties:
        csv_properties = {}
    csv_properties.update(verbose=True)
    if args.user_locale is None:
        args.user_locale = anomaly['object'].get('locale', None)
    csv_properties.update(data_locale=args.user_locale)
    csv_properties.update(missing_tokens=DEFAULT_MISSING_TOKENS)
    return Fields(anomaly['object']['model']['fields'], **csv_properties)
github bigmlcom / bigmler / bigmler / processing / pca.py View on Github external
def get_pca_fields(pca, csv_properties, args):
    """Retrieves fields info from PCA resource

    """
    args.retrieve_api_.ok(pca)
    if not csv_properties:
        csv_properties = {}
    csv_properties.update(verbose=True)
    if args.user_locale is None:
        args.user_locale = pca['object'].get('locale', None)
    csv_properties.update(data_locale=args.user_locale)
    csv_properties.update(missing_tokens=DEFAULT_MISSING_TOKENS)
    if args.exclude_objective:
        csv_properties.update({"objective_field_present": False})
        csv_properties.update({"objective_field": None})
    return Fields(pca['object']['pca']['fields'], \
        **csv_properties)