How to use the autoviml.Transform_KM_Features.KMeansFeaturizer function in autoviml

To help you get started, we’ve selected a few autoviml examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github AutoViML / Auto_ViML / autoviml / Transform_KM_Features.py View on Github external
def Transform_KM_Features(training_data, training_labels, test_data, km_max=0):
    seed = 99
    preds = list(training_data)
    target = training_labels.name
    train_index =  training_data.index
    test_index =  test_data.index
    if km_max == 0:
        km_max = int(np.log10(training_data.shape[0])+0.49)
    if km_max <= 2:
        k_max = 2
    else:
        k_max = copy.deepcopy(km_max)
    kmf =  KMeansFeaturizer(k=k_max, target_scale=0, random_state=seed)
    kmf_hint = kmf.fit(training_data, training_labels)

    training_cluster_features = kmf_hint.transform(training_data)
    test_cluster_features = kmf_hint.transform(test_data)
    npx = np.c_[training_data, training_labels.values]
    training_with_cluster = np.c_[npx,training_cluster_features]
    test_with_cluster = np.c_[test_data, test_cluster_features]
    train_with_cluster_df = pd.DataFrame(training_with_cluster,index=train_index,
                                      columns=preds+[target,'cluster'])
    test_with_cluster_df = pd.DataFrame(test_with_cluster,index=test_index,
                                      columns=preds+['cluster'])
    return train_with_cluster_df, test_with_cluster_df

autoviml

Automatically Build Variant Interpretable ML models fast - now with CatBoost!

Apache-2.0
Latest version published 7 months ago

Package Health Score

62 / 100
Full package analysis