How to use the anna.util function in anna

To help you get started, we’ve selected a few anna examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github ifp-uiuc / do-neural-networks-learn-faus-iccvw-2015 / ck_plus / cnn_ad / train.py View on Github external
if test_split < 0 or test_split > 9:
    raise Exception("Testing Split must be in range 0-9.")
print('Using CK+ testing split: {}'.format(test_split))

checkpoint_dir = os.path.join(args.checkpoint_dir, 'checkpoints_'+str(test_split))
print 'Checkpoint dir: ', checkpoint_dir

pid = os.getpid()
print('PID: {}'.format(pid))
f = open('pid_'+str(test_split), 'wb')
f.write(str(pid)+'\n')
f.close()

# Load model
model = SupervisedModel('experiment', './', learning_rate=1e-2)
monitor = util.Monitor(model,
                       checkpoint_directory=checkpoint_dir,
                       save_steps=1000)

# Add dropout to fully-connected layer
model.fc4.dropout = 0.5
model._compile()

# Loading CK+ dataset
print('Loading Data')
#supervised_data_loader = SupervisedDataLoaderCrossVal(
#    data_paths.ck_plus_data_path)
#train_data_container = supervised_data_loader.load('train', train_split)
#test_data_container = supervised_data_loader.load('test', train_split)

train_folds, val_fold, _ = data_fold_loader.load_fold_assignment(test_fold=test_split)
X_train, y_train = data_fold_loader.load_folds(data_paths.ck_plus_data_path, train_folds)
github ifp-uiuc / do-neural-networks-learn-faus-iccvw-2015 / ck_plus / cnn_a / train.py View on Github external
X_val /= 255.0
X_val *= 2.0

X_test = numpy.float32(X_test)
X_test /= 255.0
X_test *= 2.0

train_dataset = supervised_dataset.SupervisedDataset(X_train, y_train)
val_dataset = supervised_dataset.SupervisedDataset(X_val, y_val)
train_iterator = train_dataset.iterator(
    mode='random_uniform', batch_size=64, num_batches=31000)
val_iterator = val_dataset.iterator(
    mode='random_uniform', batch_size=64, num_batches=31000)

# Do data augmentation (crops, flips, rotations, scales, intensity)
data_augmenter = util.DataAugmenter2(crop_shape=(96, 96),
                                     flip=True, gray_on=True)
normer = util.Normer3(filter_size=5, num_channels=1)
module_list_train = [data_augmenter, normer]
module_list_val = [normer]
preprocessor_train = util.Preprocessor(module_list_train)
preprocessor_val = util.Preprocessor(module_list_val)

print('Training Model')
for x_batch, y_batch in train_iterator:
    x_batch = preprocessor_train.run(x_batch)
    monitor.start()
    log_prob, accuracy = model.train(x_batch, y_batch)
    monitor.stop(1-accuracy)

    if monitor.test:
        monitor.start()
github ifp-uiuc / an-analysis-of-unsupervised-pre-training-iclr-2015 / stl10 / cnn_ad / train.py View on Github external
X_train *= 2.0

X_test = numpy.float32(X_test)
X_test /= 255.0
X_test *= 2.0

train_dataset = supervised_dataset.SupervisedDataset(X_train, y_train)
test_dataset = supervised_dataset.SupervisedDataset(X_test, y_test)
train_iterator = train_dataset.iterator(
    mode='random_uniform', batch_size=128, num_batches=45000)
test_iterator = test_dataset.iterator(
    mode='random_uniform', batch_size=128, num_batches=45000)

# Create object to local contrast normalize a batch.
# Note: Every batch must be normalized before use.
normer = util.Normer2(filter_size=5, num_channels=3)
augmenter = util.DataAugmenter(16, (96, 96))

print('Training Model')
for x_batch, y_batch in train_iterator:        
    x_batch = x_batch.transpose(1, 2, 3, 0) 
    x_batch = augmenter.run(x_batch)  
    x_batch = normer.run(x_batch)   
    # y_batch = numpy.int64(numpy.argmax(y_batch, axis=1))
    monitor.start()
    log_prob, accuracy = model.train(x_batch, y_batch-1)
    monitor.stop(1-accuracy) # monitor takes error instead of accuracy    
    
    if monitor.test:
        monitor.start()
        x_test_batch, y_test_batch = test_iterator.next()
        x_test_batch = x_test_batch.transpose(1, 2, 3, 0)
github ifp-uiuc / do-neural-networks-learn-faus-iccvw-2015 / ck_plus_six_class / cnn_ad / train.py View on Github external
X_train /= 255.0
X_train *= 2.0

X_val = numpy.float32(X_val)
X_val /= 255.0
X_val *= 2.0

train_dataset = supervised_dataset.SupervisedDataset(X_train, y_train)
val_dataset = supervised_dataset.SupervisedDataset(X_val, y_val)
train_iterator = train_dataset.iterator(
    mode='random_uniform', batch_size=64, num_batches=31000)
val_iterator = val_dataset.iterator(
    mode='random_uniform', batch_size=64, num_batches=31000)

# Do data augmentation (crops, flips, rotations, scales, intensity)
data_augmenter = util.DataAugmenter2(crop_shape=(96, 96),
                                     flip=True, gray_on=True)
normer = util.Normer3(filter_size=5, num_channels=1)
module_list_train = [data_augmenter, normer]
module_list_val = [normer]
preprocessor_train = util.Preprocessor(module_list_train)
preprocessor_val = util.Preprocessor(module_list_val)

print('Training Model')
for x_batch, y_batch in train_iterator:
    x_batch = preprocessor_train.run(x_batch)
    monitor.start()
    log_prob, accuracy = model.train(x_batch, y_batch)
    monitor.stop(1-accuracy)

    if monitor.test:
        monitor.start()
github ifp-uiuc / an-analysis-of-unsupervised-pre-training-iclr-2015 / cifar10 / 50_to_1 / cnn_ad / train.py View on Github external
from anna import util
from anna.datasets import supervised_dataset

from models import CNNModel

print('Start')

pid = os.getpid()
print('PID: {}'.format(pid))
f = open('pid', 'wb')
f.write(str(pid)+'\n')
f.close()

model = CNNModel('experiment', './', learning_rate=1e-2)
monitor = util.Monitor(model)

# Add dropout
model.fc4.dropout = 0.5
model._compile()

# Loading CIFAR-10 dataset
print('Loading Data')
data_path = '/data/cifar10/'
reduced_data_path = os.path.join(data_path, 'reduced', 'cifar10_100')

train_data = numpy.load(os.path.join(reduced_data_path, 'train_X_split_0.npy'))
train_labels = numpy.load(os.path.join(reduced_data_path,
                          'train_y_split_0.npy'))
test_data = numpy.load('/data/cifar10/test_X.npy')
test_labels = numpy.load('/data/cifar10/test_y.npy')
github ifp-uiuc / an-analysis-of-unsupervised-pre-training-iclr-2015 / cifar10 / 10_to_1 / cnn_au / train.py View on Github external
from anna.datasets import supervised_dataset

import checkpoints
from models import CNNModel

print('Start')

pid = os.getpid()
print('PID: {}'.format(pid))
f = open('pid', 'wb')
f.write(str(pid)+'\n')
f.close()

model = CNNModel('experiment', './', learning_rate=1e-2)
checkpoint = checkpoints.unsupervised_layer3
util.set_parameters_from_unsupervised_model(model, checkpoint)
monitor = util.Monitor(model)

# Loading CIFAR-10 dataset
print('Loading Data')
data_path = '/data/cifar10/'
reduced_data_path = os.path.join(data_path, 'reduced', 'cifar10_500')

train_data = numpy.load(os.path.join(reduced_data_path, 'train_X_split_0.npy'))
train_labels = numpy.load(os.path.join(reduced_data_path,
                          'train_y_split_0.npy'))
test_data = numpy.load('/data/cifar10/test_X.npy')
test_labels = numpy.load('/data/cifar10/test_y.npy')

train_dataset = supervised_dataset.SupervisedDataset(train_data, train_labels)
test_dataset = supervised_dataset.SupervisedDataset(test_data, test_labels)
train_iterator = train_dataset.iterator(
github ifp-uiuc / an-analysis-of-unsupervised-pre-training-iclr-2015 / stl10 / cnn_adc / train.py View on Github external
parser.add_argument("-s", "--split", default='0', help='Training split of stl10 to use. (0-9)')
args = parser.parse_args()

train_split = int(args.split)
if train_split < 0 or train_split > 9:
    raise Exception("Training Split must be in range 0-9.")
print('Using STL10 training split: {}'.format(train_split))

pid = os.getpid()
print('PID: {}'.format(pid))
f = open('pid_'+str(train_split), 'wb')
f.write(str(pid)+'\n')
f.close()

model = CNNModel('experiment', './', learning_rate=1e-2)
monitor = util.Monitor(model, checkpoint_directory='checkpoints_'+str(train_split))

# Loading STL-10 dataset
print('Loading Data')
X_train = numpy.load('/data/stl10_matlab/train_splits/train_X_'+str(train_split)+'.npy')
y_train = numpy.load('/data/stl10_matlab/train_splits/train_y_'+str(train_split)+'.npy')
X_test = numpy.load('/data/stl10_matlab/test_X.npy')
y_test = numpy.load('/data/stl10_matlab/test_y.npy')

X_train = numpy.float32(X_train)
X_train /= 255.0
X_train *= 1.0

X_test = numpy.float32(X_test)
X_test /= 255.0
X_test *= 1.0
github ifp-uiuc / an-analysis-of-unsupervised-pre-training-iclr-2015 / cifar10 / cae / layer2 / train.py View on Github external
w = w.transpose(1, 0)
    w = w.reshape(channels, width, height, filters)
    w = numpy.float32(w)
    return w

print('Start')

pid = os.getpid()
print('PID: {}'.format(pid))
f = open('pid', 'wb')
f.write(str(pid)+'\n')
f.close()

model = CAELayer2Model('experiment', './', learning_rate=1e-5)
checkpoint = checkpoints.unsupervised_layer1
util.set_parameters_from_unsupervised_model(model, checkpoint)
monitor = util.Monitor(model, save_steps=200)

model.conv1.trainable = False
model._compile()

# Loading CIFAR-10 dataset
print('Loading Data')
train_data = numpy.load('/data/cifar10/train_X.npy')
test_data = numpy.load('/data/cifar10/test_X.npy')

train_dataset = unsupervised_dataset.UnsupervisedDataset(train_data)
test_dataset = unsupervised_dataset.UnsupervisedDataset(test_data)
train_iterator = train_dataset.iterator(
    mode='random_uniform', batch_size=128, num_batches=100000)
test_iterator = test_dataset.iterator(mode='sequential', batch_size=128)