Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def test_evaluate_performance_so_side_corruptions_without_filter():
X = load_wn18()
model = ComplEx(batches_count=10, seed=0, epochs=5, k=200, eta=10, loss='nll',
regularizer=None, optimizer='adam', optimizer_params={'lr': 0.01}, verbose=True)
model.fit(X['train'])
X_filter = np.concatenate((X['train'], X['valid'], X['test']))
ranks = evaluate_performance(X['test'][::20], model, X_filter, verbose=True,
use_default_protocol=False, corrupt_side='s+o')
mrr = mrr_score(ranks)
hits_10 = hits_at_n_score(ranks, n=10)
print("ranks: %s" % ranks)
print("MRR: %f" % mrr)
print("Hits@10: %f" % hits_10)
assert(mrr is not np.Inf)
print('MAR:', mr_sep)
print('Mrr:', mrr_score(ranks_sep))
print('hits10:', hits_at_n_score(ranks_sep, 10))
print('hits3:', hits_at_n_score(ranks_sep, 3))
print('hits1:', hits_at_n_score(ranks_sep, 1))
from ampligraph.evaluation import evaluate_performance
from ampligraph.evaluation import hits_at_n_score, mrr_score, mr_score
ranks = evaluate_performance(wn18['test'][::100], model, verbose=True, corrupt_side='s+o',
use_default_protocol=True)
print('----------corrupted with default protocol-----------------')
mr_joint = mr_score(ranks)
mrr_joint = mrr_score(ranks)
print('MAR:', mr_joint)
print('Mrr:', mrr_score(ranks))
print('hits10:', hits_at_n_score(ranks, 10))
print('hits3:', hits_at_n_score(ranks, 3))
print('hits1:', hits_at_n_score(ranks, 1))
np.testing.assert_equal(mr_sep, mr_joint)
assert(mrr_joint is not np.Inf)
from ampligraph.evaluation import hits_at_n_score, mrr_score, mr_score
ranks = evaluate_performance(wn18['test'][::100], model, X_filter, verbose=True, corrupt_side='o',
use_default_protocol=False)
ranks_sep.extend(ranks)
from ampligraph.evaluation import evaluate_performance
from ampligraph.evaluation import hits_at_n_score, mrr_score, mr_score
ranks = evaluate_performance(wn18['test'][::100], model, X_filter, verbose=True, corrupt_side='s',
use_default_protocol=False)
ranks_sep.extend(ranks)
print('----------EVAL WITH FILTER-----------------')
print('----------Subj and obj corrupted separately-----------------')
mr_sep = mr_score(ranks_sep)
print('MAR:', mr_sep)
print('Mrr:', mrr_score(ranks_sep))
print('hits10:', hits_at_n_score(ranks_sep, 10))
print('hits3:', hits_at_n_score(ranks_sep, 3))
print('hits1:', hits_at_n_score(ranks_sep, 1))
from ampligraph.evaluation import evaluate_performance
from ampligraph.evaluation import hits_at_n_score, mrr_score, mr_score
ranks = evaluate_performance(wn18['test'][::100], model, X_filter, verbose=True, corrupt_side='s+o',
use_default_protocol=True)
print('----------corrupted with default protocol-----------------')
mr_joint = mr_score(ranks)
mrr_joint = mrr_score(ranks)
print('MAR:', mr_joint)
print('Mrr:', mrr_joint)
print('hits10:', hits_at_n_score(ranks, 10))
print('hits3:', hits_at_n_score(ranks, 3))
'x_valid':X['test'][:1000],
'criteria':'mrr', 'x_filter':filter,
'stop_interval': 2,
'burn_in':0,
'check_interval':100
})
# model.fit(np.concatenate((X['train'], X['valid'])))
# Run the evaluation procedure on the test set. Will create filtered rankings.
# To disable filtering: filter_triples=None
ranks = evaluate_performance(X['test'], model=model, filter_triples=filter,
verbose=True)
# compute and print metrics:
mr = mar_score(ranks)
mrr = mrr_score(ranks)
hits_1 = hits_at_n_score(ranks, n=1)
hits_3 = hits_at_n_score(ranks, n=3)
hits_10 = hits_at_n_score(ranks, n=10)
with open("result_{0}_{1}.txt".format(args.dataset, args.model), "w") as fo:
fo.write("mr(test): {0} mrr(test): {1} hits 1: {2} hits 3: {3} hits 10: {4}".format(mr, mrr, hits_1, hits_3, hits_10))
if not hasattr(model, 'early_stopping_epoch') or model.early_stopping_epoch is None:
early_stopping_epoch = np.nan
else:
early_stopping_epoch = model.early_stopping_epoch
# Run the evaluation procedure on the test set. Will create filtered rankings.
# To disable filtering: filter_triples=None
ranks = evaluate_performance(X['test'],
model,
filter,
verbose=False)
# compute and print metrics:
mr = mr_score(ranks)
mrr = mrr_score(ranks)
hits_1 = hits_at_n_score(ranks, n=1)
hits_3 = hits_at_n_score(ranks, n=3)
hits_10 = hits_at_n_score(ranks, n=10)
return {
"mr": mr,
"mrr": mrr,
"H@1": hits_1,
"H@3": hits_3,
"H@10": hits_10,
"hyperparams": hyperparams,
"time": time.time() - start_time,
"early_stopping_epoch": early_stopping_epoch
}
# compute and store test_loss
ranks = []
# Get each triple and compute the rank for that triple
for x_test_triple in range(self.eval_dataset_handle.get_size("valid")):
rank_triple = self.sess_train.run(self.rank)
ranks.append(rank_triple)
if self.early_stopping_criteria == 'hits10':
current_test_value = hits_at_n_score(ranks, 10)
elif self.early_stopping_criteria == 'hits3':
current_test_value = hits_at_n_score(ranks, 3)
elif self.early_stopping_criteria == 'hits1':
current_test_value = hits_at_n_score(ranks, 1)
elif self.early_stopping_criteria == 'mrr':
current_test_value = mrr_score(ranks)
if self.early_stopping_best_value is None: # First validation iteration
self.early_stopping_best_value = current_test_value
self.early_stopping_first_value = current_test_value
elif self.early_stopping_best_value >= current_test_value:
self.early_stopping_stop_counter += 1
if self.early_stopping_stop_counter == self.early_stopping_params.get(
'stop_interval', DEFAULT_STOP_INTERVAL_EARLY_STOPPING):
# If the best value for the criteria has not changed from
# initial value then
# save the model before early stopping
if self.early_stopping_best_value == self.early_stopping_first_value:
self._save_trained_params()
if self.verbose:
def evaluation(ranks):
mrr = mrr_score(ranks)
mr = mr_score(ranks)
hits_1 = hits_at_n_score(ranks, n=1)
hits_3 = hits_at_n_score(ranks, n=3)
hits_10 = hits_at_n_score(ranks, n=10)
return mrr, mr, hits_1, hits_3, hits_10