Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def classifyExample(self, ex, what = orange.Classifier.GetValue):
val = self.classVar.getValueFrom(ex).value
classDist = orange.ContingencyAttrClass(self.classVar, self.data)[val]
classValue = classDist.keys()[classDist.values().index(max(classDist.values()))]
if what == orange.Classifier.GetValue:
return orange.Value(self.data.domain.classVar, classValue)
elif what == orange.Classifier.GetProbabilities:
return classDist
else:
return (orange.Value(self.data.domain.classVar, classValue), classDist)
e1 = orange.FloatVariable("e=1")
e1.getValueFrom = orange.ClassifierFromVar(whichVar = e)
e1.getValueFrom.transformer = orange.Discrete2Continuous()
e1.getValueFrom.transformer.value = int(orange.Value(e, "1"))
e10 = orange.FloatVariable("e=1")
e10.getValueFrom = orange.ClassifierFromVar(whichVar = e)
e10.getValueFrom.transformer = orange.Discrete2Continuous()
e10.getValueFrom.transformer.value = int(orange.Value(e, "1"))
e10.getValueFrom.transformer.zeroBased = False
e01 = orange.FloatVariable("e=1")
e01.getValueFrom = orange.ClassifierFromVar(whichVar = e)
transformer = e01.getValueFrom.transformer = orange.Discrete2Continuous()
transformer.value = int(orange.Value(e, "1"))
transformer.zeroBased = False
transformer.invert = True
newDomain = orange.Domain([e, e1, e10, e01], data.domain.classVar)
newData = orange.ExampleTable(newDomain, data)
for ex in newData[:10]:
print ex
print "\n\n"
attributes = [e]
for v in e.values:
newattr = orange.FloatVariable("e=%s" % v)
newattr.getValueFrom = orange.ClassifierFromVar(whichVar = e)
newattr.getValueFrom.transformer = orange.Discrete2Continuous()
newattr.getValueFrom.transformer.value = int(orange.Value(e, v))
selection.getValueFrom = lambda ex, what: orange.Value(selection, "0")
data1 = orange.ExampleTable(d1, shortData1)
getValueFrom=lambda ex, rw, c=c: orange.Value(c(ex)))
for c in self.predictors.values()]
)
for ex in fya(data):
print ex
print "\nYoung or presbyopic with astigmatism"
fya = orange.Filter_values(domain = data.domain,
conditions = [orange.ValueFilter_discrete(position = data.domain.attributes.index(age), values=[orange.Value(age, "young"), orange.Value(age, "presbyopic")], acceptSpecial = 1),
orange.ValueFilter_discrete(position = data.domain.attributes.index(astigm), values=[orange.Value(astigm, "yes")])
],
)
for ex in fya(data):
print ex
print "\nYoung or presbyopic or astigmatic"
fya = orange.Filter_values(domain = data.domain,
conditions = [orange.ValueFilter_discrete(position = data.domain.attributes.index(age), values=[orange.Value(age, "young"), orange.Value(age, "presbyopic")], acceptSpecial = 1),
orange.ValueFilter_discrete(position = data.domain.attributes.index(astigm), values=[orange.Value(astigm, "yes")])
],
conjunction = 0
)
for ex in fya(data):
print ex
import orange
def err():
raise Exception("Error")
fruit = orange.EnumVariable("fruit", values = ["plum", "apple", "lemon"])
iq = orange.FloatVariable("iq")
lm = orange.Value(fruit, "lemon")
ap = orange.Value(fruit, 1)
un = orange.Value(fruit)
Mary = orange.Value(iq, "105")
Harry = orange.Value(iq, 80)
Dick = orange.Value(iq)
sf = orange.Value(2)
Sally = orange.Value(118.0)
sf.variable = fruit
city = orange.Value(orange.StringValue("Cicely"))
if (lm!="lemon"): raise error
if (lm<"apple"): raise error
if (orange.Value(1)>lm): raise error
deg3 = orange.EnumVariable(values=["little", "medium", "big"])
deg4 = orange.EnumVariable(values=["tiny", "little", "big", "huge"])
selection.getValueFrom = lambda ex, what: orange.Value(selection, "0")
data1 = orange.ExampleTable(d1, shortData1)
getValueFrom = lambda ex, rw, cindx=i, c=c: orange.Value(c(ex, c.GetProbabilities)[cindx])) \
for i in self.selectedClasses]
# Classes: Value
# Uses:
# Referenced: Value.htm
import orange
def err():
raise Exception("Error")
fruit = orange.EnumVariable("fruit", values = ["plum", "apple", "lemon"])
iq = orange.FloatVariable("iq")
lm = orange.Value(fruit, "lemon")
ap = orange.Value(fruit, 1)
un = orange.Value(fruit)
Mary = orange.Value(iq, "105")
Harry = orange.Value(iq, 80)
Dick = orange.Value(iq)
sf = orange.Value(2)
Sally = orange.Value(118.0)
sf.variable = fruit
city = orange.Value(orange.StringValue("Cicely"))
if (lm!="lemon"): raise error
if (lm<"apple"): raise error
if (orange.Value(1)>lm): raise error
# compute the class probabilities
p = map(None, self.p_class)
for c in range(len(self.domain.classVar.values)):
for a in range(len(self.domain.attributes)):
if not example[a].isSpecial():
p[c] *= self.p_cond[a][int(example[a])][c]
# normalize probabilities to sum to 1
sum =0.
for pp in p: sum += pp
if sum>0:
for i in range(len(p)): p[i] = p[i]/sum
# find the class with highest probability
v_index = p.index(max(p))
v = orange.Value(self.domain.classVar, v_index)
# return the value based on requested return type
if result_type == orange.GetValue:
return v
if result_type == orange.GetProbabilities:
return p
return (v,p)