How to use the six.moves.zip function in six

To help you get started, we’ve selected a few six examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github morpheus65535 / bazarr / libs / subzero / language.py View on Github external
def rebuild(cls, instance, **replkw):
        state = instance.__getstate__()
        attrs = ("country", "script", "forced")
        language = state[0]
        kwa = dict(list(zip(attrs, state[1:])))
        kwa.update(replkw)
        return cls(language, **kwa)
github cctbx / cctbx_project / cctbx / sgtbx / rational_matrices_point_groups.py View on Github external
def row_as_hkl( row, txt=['h','k','l']):
      result = ""
      part = 0
      for n,j in zip(row,txt):
        nn=""
        if n != rational.int(0):
          part += 1
          if n >rational.int(0):
            if part==1:
              if n==rational.int(1):
                nn = j
              else:
                nn = str(n)+j
            if part > 1:
              if n==rational.int(1):
                nn = "+"+j
              else:
                nn = "+"+str(n)+j
          if n < rational.int(0):
            if part==1:
github zhanglab / psamm / psamm / lpsolver / gurobi.py View on Github external
for var, val in value_set:
            if not isinstance(var, Product):
                linear.append((
                    float(val), self._p.getVarByName(self._variables[var])))
            else:
                if len(var) > 2:
                    raise ValueError('Invalid objective: {}'.format(var))
                quad.append((
                    float(val), self._p.getVarByName(self._variables[var[0]]),
                    self._p.getVarByName(self._variables[var[1]])))

        if len(quad) > 0:
            expr = gurobipy.QuadExpr()
            if len(linear) > 0:
                expr.addTerms(*zip(*linear))
            expr.addTerms(*zip(*quad))
        else:
            expr = gurobipy.LinExpr(linear)

        return expr
github tensorflow / tensorflow / tensorflow / python / keras / _impl / keras / engine / base_layer.py View on Github external
shape = x.get_shape().as_list()
        if shape is not None:
          for axis, value in spec.axes.items():
            if hasattr(value, 'value'):
              value = value.value
            if value is not None and shape[int(axis)] not in {value, None}:
              raise ValueError(
                  'Input ' + str(input_index) + ' of layer ' + self.name + ' is'
                  ' incompatible with the layer: expected axis ' + str(axis) +
                  ' of input shape to have value ' + str(value) +
                  ' but received input with shape ' + str(shape))
      # Check shape.
      if spec.shape is not None:
        shape = x.get_shape().as_list()
        if shape is not None:
          for spec_dim, dim in zip(spec.shape, shape):
            if spec_dim is not None and dim is not None:
              if spec_dim != dim:
                raise ValueError('Input ' + str(input_index) +
                                 ' is incompatible with layer ' + self.name +
                                 ': expected shape=' + str(spec.shape) +
                                 ', found shape=' + str(shape))
github cctbx / cctbx_project / iota / components / iota_tracker.py View on Github external
if new_x is None:
      new_x = []
    if new_y is None:
      new_y = []
    if new_i is None:
      new_i = []

    nref_x = np.append(self.xdata, np.array(new_x).astype(np.double))
    nref_y = np.append(self.ydata, np.array(new_y).astype(np.double))
    nref_i = np.append(self.idata, np.array(new_i).astype(np.double))
    self.xdata = nref_x
    self.ydata = nref_y
    self.idata = nref_i

    nref_xy = list(zip(nref_x, nref_y))
    all_acc = [i[0] for i in nref_xy if i[1] >= min_bragg]
    all_rej = [i[0] for i in nref_xy if i[1] < min_bragg]

    if nref_x != [] and nref_y != []:
      if self.plot_zoom:
        if self.max_lock:
          self.x_max = np.max(nref_x)
          self.x_min = self.x_max - self.chart_range
      else:
        self.x_min = -1
        self.x_max = np.max(nref_x) + 1

      if min_bragg > np.max(nref_y):
        self.y_max = min_bragg + int(0.1 * min_bragg)
      else:
        self.y_max = np.max(nref_y) + int(0.1 * np.max(nref_y))
github armandmcqueen / tensorpack-mask-rcnn / tensorpack / callbacks / graph.py View on Github external
def fn(*args):
            dic = {}
            for name, val in zip(self._names, args):
                dic[name] = val
            fname = os.path.join(
                dir, 'DumpTensor-{}.npz'.format(self.global_step))
            np.savez(fname, **dic)
        super(DumpTensors, self).__init__(names, fn)
github armandmcqueen / tensorpack-mask-rcnn / tensorpack / input_source / input_source.py View on Github external
def _get_input_tensors(self):
        with tf.device('/cpu:0'), self.cached_name_scope():
            ret = self.queue.dequeue(name='input_deque')
            if isinstance(ret, tf.Tensor):  # only one input
                ret = [ret]
            assert len(ret) == len(self._input_placehdrs)
            for qv, v in zip(ret, self._input_placehdrs):
                qv.set_shape(v.get_shape())
            return ret
github chainer / chainer / chainer / dataset / tabular / tabular_dataset.py View on Github external
Note that this method returns a column-major data
        (i.e. :obj:`([a[0], ..., a[3]], ..., [c[0], ... c[3]])`,
        :obj:`{'a': [a[0], ..., a[3]], ..., 'c': [c[0], ..., c[3]]}`, or
        :obj:`[a[0], ..., a[3]]`).

        Returns:
            If :attr:`mode` is :class:`tuple`,
            this method returns a tuple of lists/arrays.
            If :attr:`mode` is :class:`dict`,
            this method returns a dict of lists/arrays.
        """
        examples = self.get_examples(None, None)
        if self.mode is tuple:
            return examples
        elif self.mode is dict:
            return dict(six.moves.zip(self.keys, examples))
        elif self.mode is None:
            return examples[0]
github Morgan-Stanley / treadmill / lib / python / treadmill / scheduler / __init__.py View on Github external
self._fix_invalid_placements(queue, servers)
        self._handle_inactive_servers(servers)
        self._handle_blacklisted_apps(queue, servers)
        self._fix_invalid_identities(queue, servers)

        for label, partition in six.iteritems(self.partitions):
            allocation = partition.allocation
            allocation.label = label
            self.schedule_alloc(allocation, servers)

        after = [(app.server, app.placement_expiry)
                 for app in all_apps]

        placement = [
            tuple(itertools.chain(b, a))
            for b, a in six.moves.zip(before, after)
        ]

        for appname, s_before, exp_before, s_after, exp_after in placement:
            if s_before != s_after:
                _LOGGER.info('New placement: %s - %s => %s',
                             appname, s_before, s_after)
            else:
                if exp_before != exp_after:
                    _LOGGER.info('Renewed: %s [%s] - %s => %s',
                                 appname, s_before, exp_before, exp_after)

        _LOGGER.info('Total scheduler time for %s apps: %r (sec)',
                     len(all_apps),
                     time.time() - begin)
        return placement
github PaddlePaddle / Paddle / python / paddle / fluid / data_feeder.py View on Github external
def feed(self, iterable):
        converter = []
        for lod_level, shape, dtype in six.zip(
                self.feed_lod_level, self.feed_shapes, self.feed_dtypes):
            converter.append(
                DataToLoDTensorConverter(
                    place=self.place,
                    lod_level=lod_level,
                    shape=shape,
                    dtype=dtype))

        for each_sample in iterable:
            assert len(each_sample) == len(converter), (
                "The number of fields in data (%s) does not match " +
                "len(feed_list) (%s)") % (len(each_sample), len(converter))
            for each_converter, each_slot in six.zip(converter, each_sample):
                each_converter.feed(each_slot)
        ret_dict = {}
        for each_name, each_converter in six.zip(self.feed_names, converter):