Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
@plotters.set_subplot_filename
def subplot_fit_hyper_galaxy(
fit, hyper_fit, galaxy_image, contribution_map_in, include=None, sub_plotter=None
):
number_subplots = 6
sub_plotter.open_subplot_figure(number_subplots=number_subplots)
sub_plotter.setup_subplot(number_subplots=number_subplots, subplot_index=1)
hyper_galaxy_image(
galaxy_image=galaxy_image,
mask=include.mask_from_fit(fit=fit),
plotter=sub_plotter,
)
@plotters.set_labels
def interpolated_errors(
inversion,
source_positions=None,
grid=None,
caustics=None,
include=None,
plotter=None,
):
plotter.plot_array(
array=inversion.interpolated_errors_from_shape_2d(),
positions=source_positions,
grid=grid,
critical_curves=caustics,
include_origin=include.origin,
include_border=include.border,
@plotters.set_subplot_filename
def subplot_fit_real_space(
fit,
include=lensing_plotters.Include(),
sub_plotter=plotters.SubPlotter(),
):
number_subplots = 2
sub_plotter.open_subplot_figure(number_subplots=number_subplots)
sub_plotter.setup_subplot(number_subplots=number_subplots, subplot_index=1)
if fit.inversion is None:
ray_tracing_plots.profile_image(
tracer=fit.tracer,
@plotters.set_labels
def potential(tracer, grid, include=None, plotter=None):
plotter.plot_array(
array=tracer.potential_from_grid(grid=grid),
mask=include.mask_from_grid(grid=grid),
critical_curves=include.critical_curves_from_obj(obj=tracer),
light_profile_centres=include.light_profile_centres_from_obj(obj=tracer),
mass_profile_centres=include.mass_profile_centres_from_obj(obj=tracer),
include_origin=include.origin,
)
@plotters.set_labels
def residual_map(
inversion,
source_positions=None,
caustics=None,
image_pixel_indexes=None,
source_pixel_indexes=None,
include=None,
plotter=None,
):
source_pixel_values = inversion.mapper.reconstructed_pixelization_from_solution_vector(
solution_vector=inversion.residual_map
)
plotter.plot_mapper(
mapper=inversion.mapper,
@plotters.set_subplot_filename
def subplot_inversion(
inversion,
image_positions=None,
source_positions=None,
grid=None,
light_profile_centres=None,
mass_profile_centres=None,
critical_curves=None,
caustics=None,
image_pixel_indexes=None,
source_pixel_indexes=None,
include=None,
sub_plotter=None,
):
number_subplots = 6
@plotters.set_subplot_filename
def subplot_tracer(tracer, grid, positions=None, include=None, sub_plotter=None):
"""Plot the observed _tracer of an analysis, using the *Imaging* class object.
The visualization and output type can be fully customized.
Parameters
-----------
tracer : autolens.imaging.tracer.Imaging
Class containing the _tracer, noise_mappers and PSF that are to be plotted.
The font size of the figure ylabel.
output_path : str
The path where the _tracer is output if the output_type is a file format (e.g. png, fits)
output_format : str
How the _tracer is output. File formats (e.g. png, fits) output the _tracer to harddisk. 'show' displays the _tracer \
in the python interpreter window.
"""
@plotters.set_labels
def model_image_of_plane(fit, plane_index, include=None, plotter=None):
"""Plot the model image of a specific plane of a lens fit.
Set *autolens.datas.arrays.plotters.plotters* for a description of all input parameters not described below.
Parameters
-----------
fit : datas.fitting.fitting.AbstractFitter
The fit to the datas, which includes a list of every model image, residual_map, chi-squareds, etc.
plane_indexes : [int]
The plane from which the model image is generated.
"""
if isinstance(plotter, lensing_plotters.Plotter):
plotter = plotter.plotter_with_new_output(
filename=plotter.output.filename + "_" + str(plane_index)
@plotters.set_labels
def subplot_image_and_mapper(
image,
mapper,
image_positions=None,
source_positions=None,
critical_curves=None,
caustics=None,
image_pixel_indexes=None,
source_pixel_indexes=None,
include=plotters.Include(),
sub_plotter=None,
):
number_subplots = 2
sub_plotter.open_subplot_figure(number_subplots=number_subplots)
@plotters.set_subplot_filename
def subplot_of_plane(fit, plane_index, include=None, sub_plotter=None):
"""Plot the model datas_ of an analysis, using the *Fitter* class object.
The visualization and output type can be fully customized.
Parameters
-----------
fit : autolens.lens.fitting.Fitter
Class containing fit between the model datas_ and observed lens datas_ (including residual_map, chi_squared_map etc.)
output_path : str
The path where the datas_ is output if the output_type is a file format (e.g. png, fits)
output_filename : str
The name of the file that is output, if the output_type is a file format (e.g. png, fits)
output_format : str
How the datas_ is output. File formats (e.g. png, fits) output the datas_ to harddisk. 'show' displays the datas_ \
in the python interpreter window.