How to use the autoarray.kernel function in autoarray

To help you get started, we’ve selected a few autoarray examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github Jammy2211 / PyAutoLens / test_autolens / unit / data / test_imaging.py View on Github external
array_2d=background_noise_map_array.in_2d, bin_up_factor=2
            )

            exposure_time_map_array = aa.array.ones(shape_2d=(6,6), pixel_scales=1.0)
            exposure_time_map_array[21:24] = 5.0
            binned_exposure_time_map_util = aa.binning_util.binned_array_2d_using_sum_from_array_2d_and_bin_up_factor(
                array_2d=exposure_time_map_array.in_2d, bin_up_factor=2
            )

            background_sky_map_array = aa.array.ones(shape_2d=(6,6), pixel_scales=1.0)
            background_sky_map_array[21:24] = 6.0
            binned_background_sky_map_util = aa.binning_util.binned_up_array_2d_using_mean_from_array_2d_and_bin_up_factor(
                array_2d=background_sky_map_array.in_2d, bin_up_factor=2
            )

            psf = aa.kernel.ones(shape_2d=(3,5), pixel_scales=1.0)
            psf_util = psf.rescaled_with_odd_dimensions_from_rescale_factor(
                rescale_factor=0.5, renormalize=True
            )

            imaging_data = al.ImagingData(
                image=image,
                pixel_scales=1.0,
                psf=psf,
                noise_map=noise_map_array,
                background_noise_map=background_noise_map_array,
                exposure_time_map=exposure_time_map_array,
                background_sky_map=background_sky_map_array,
            )

            imaging_data = imaging_data.binned_data_from_bin_up_factor(
                bin_up_factor=2
github Jammy2211 / PyAutoLens / test_autolens / unit / data / test_uv_plane.py View on Github external
def test__data_with_resized_primary_beam(self):

        uv_plane_data = al.UVPlaneData(
            shape_2d=(2, 2),
            pixel_scales=1.0,
            visibilities=np.array([[1, 1]]),
            primary_beam=aa.kernel.zeros(shape_2d=(5,5), pixel_scales=1.0),
            noise_map=1,
            exposure_time_map=1,
            uv_wavelengths=1,
        )

        uv_plane_data = uv_plane_data.resized_primary_beam_from_new_shape(
            new_shape=(1, 1)
        )

        assert (uv_plane_data.primary_beam.in_2d == np.zeros((1, 1))).all()
github Jammy2211 / PyAutoLens / test_autolens / mock / data / mock_data.py View on Github external
def __new__(cls, shape, value, pixel_scales=1.0, *args, **kwargs):
        return aa.kernel(
            array_1d=value * np.ones(shape=shape),
            pixel_scales=pixel_scales,
            origin=(0.0, 0.0),
        )
github Jammy2211 / PyAutoLens / test_autolens / unit / data / test_imaging.py View on Github external
def test__setup_with_background_sky_and_psf_on__psf_does_no_blurring__image_and_sky_both_trimmed(
        self
    ):
        image = aa.array.manual_2d(
            array=np.array(
                [
                    [0.0, 0.0, 0.0, 0.0, 0.0],
                    [0.0, 0.0, 0.0, 0.0, 0.0],
                    [0.0, 0.0, 1.0, 0.0, 0.0],
                    [0.0, 0.0, 0.0, 0.0, 0.0],
                    [0.0, 0.0, 0.0, 0.0, 0.0],
                ]
            ),
        )

        psf = aa.kernel.no_blur()

        exposure_time_map = aa.array.ones(shape_2d=image.mask.shape
        )

        background_sky_map = aa.array.full(fill_value=16.0, shape_2d=image.mask.shape
        )

        imaging_data_simulated = al.SimulatedImagingData.from_image_and_exposure_arrays(
            image=image,
            exposure_time=1.0,
            exposure_time_map=exposure_time_map,
            psf=psf,
            background_sky_map=background_sky_map,
            add_noise=False,
            noise_seed=1,
        )
github Jammy2211 / PyAutoLens / test_autolens / unit / data / test_imaging.py View on Github external
def test__setup_image__correct_attributes(self):

            image = aa.array.manual_2d(
                array=[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]],
            )
            psf = aa.kernel.full(fill_value=3.0, shape_2d=(3,3))
            noise_map = aa.array.manual_2d(
                array=5.0 * np.ones((3, 3)),
            )

            imaging_data = al.ImagingData(
                image=image,
                pixel_scales=0.1,
                noise_map=noise_map,
                psf=psf,
                background_noise_map=aa.array.full(fill_value=7.0, 
                    shape_2d=((3, 3)),
                ),
                poisson_noise_map=aa.array.full(fill_value=9.0, 
                    shape_2d=((3, 3)),
                ),
                exposure_time_map=aa.array.full(fill_value=11.0,
github Jammy2211 / PyAutoLens / test_autolens / mock / data / mock_data.py View on Github external
def __new__(cls, shape, value, pixel_scales=1.0, *args, **kwargs):
        return aa.kernel.manual_2d(
            array_2d=value * np.ones(shape=shape),
            pixel_scales=pixel_scales,
            origin=(0.0, 0.0),
        )
github Jammy2211 / PyAutoLens / test_autolens / unit / data / test_imaging.py View on Github external
noise_map_array = aa.array.ones(shape_2d=(4,4))
            noise_map_array[10] = 3.0

            background_noise_map_array = aa.array.ones(shape_2d=(4,4))
            background_noise_map_array[10] = 4.0

            exposure_time_map_array = aa.array.ones(shape_2d=(4,4))
            exposure_time_map_array[10] = 5.0

            background_sky_map_array = aa.array.ones(shape_2d=(4,4))
            background_sky_map_array[10] = 6.0

            imaging_data = al.ImagingData(
                image=image,
                pixel_scales=1.0,
                psf=aa.kernel.zeros(shape_2d=(3,3)),
                noise_map=noise_map_array,
                background_noise_map=background_noise_map_array,
                exposure_time_map=exposure_time_map_array,
                background_sky_map=background_sky_map_array,
            )

            modified_image = aa.array.ones(shape_2d=(4,4), pixel_scales=1.0)
            modified_image[10] = 10.0

            imaging_data = imaging_data.modified_image_from_image(
                image=modified_image
            )

            assert (
                imaging_data.image.in_2d
                == np.array(
github Jammy2211 / PyAutoLens / autolens / simulate / simulator.py View on Github external
cls,
        shape=(401, 401),
        pixel_scales=0.03,
        psf_shape=(31, 31),
        psf_sigma=0.05,
        exposure_time=2000.0,
        background_sky_level=1.0,
            add_noise=True,
            noise_if_add_noise_false=0.1,
            noise_seed=-1,
    ):
        """Default settings for an observation with the Hubble Space Telescope which has been upscaled to a higher \
        pixel-scale to better sample the PSF.

        This can be customized by over-riding the default input values."""
        psf = aa.kernel.from_gaussian(
            shape_2d=psf_shape, sigma=psf_sigma, pixel_scales=pixel_scales
        )
        return ImagingSimulator(
            shape_2d=shape,
            pixel_scales=pixel_scales,
            psf=psf,
            exposure_time=exposure_time,
            background_sky_level=background_sky_level,
            add_noise=add_noise,
            noise_if_add_noise_false=noise_if_add_noise_false,
            noise_seed=noise_seed
        )
github Jammy2211 / PyAutoLens / autolens / simulate / simulator.py View on Github external
def lsst(
        cls,
        shape=(101, 101),
        pixel_scales=0.2,
        psf_shape=(31, 31),
        psf_sigma=0.5,
        exposure_time=100.0,
        background_sky_level=1.0,
        add_noise=True,
            noise_if_add_noise_false=0.1,
            noise_seed=-1,
    ):
        """Default settings for an observation with the Large Synotpic Survey Telescope.

        This can be customized by over-riding the default input values."""
        psf = aa.kernel.from_gaussian(
            shape_2d=psf_shape, sigma=psf_sigma, pixel_scales=pixel_scales
        )
        return ImagingSimulator(
            shape_2d=shape,
            pixel_scales=pixel_scales,
            psf=psf,
            exposure_time=exposure_time,
            background_sky_level=background_sky_level,
            add_noise=add_noise,
            noise_if_add_noise_false=noise_if_add_noise_false,
            noise_seed=noise_seed,
        )