How to use the autoarray.array.ones function in autoarray

To help you get started, we’ve selected a few autoarray examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github Jammy2211 / PyAutoLens / test_autolens / unit / data / test_imaging.py View on Github external
def test__image_all_1s__bg_noise_all_1s__exposure_time_all_2s__noise_map_all_sqrt_6s_over_2(
            self
        ):
            imaging_data = aa.array.ones(shape_2d=(2,2))
            background_noise_map = aa.array.ones(shape_2d=(2,2))
            exposure_time_map = aa.array.full(fill_value=2.0, shape_2d=(2,2))

            noise_map = al.NoiseMap.from_image_and_background_noise_map(
                image=imaging_data,
                background_noise_map=background_noise_map,
                gain=1.0,
                exposure_time_map=exposure_time_map,
            )

            assert (
                noise_map.in_2d
                == np.array(
                    [
                        [np.sqrt(6.0) / 2.0, np.sqrt(6.0) / 2.0],
                        [np.sqrt(6.0) / 2.0, np.sqrt(6.0) / 2.0],
                    ]
github Jammy2211 / PyAutoLens / test_autolens / unit / data / test_imaging.py View on Github external
self
    ):
        imaging_data = al.load_imaging_data_from_fits(
            pixel_scales=0.1,
            image_path=test_data_dir + "3x3_ones.fits",
            psf_path=test_data_dir + "3x3_twos.fits",
            noise_map_from_image_and_background_noise_map=True,
            background_noise_map_path=test_data_dir + "3x3_fours.fits",
            poisson_noise_map_path=test_data_dir + "3x3_fives.fits",
            exposure_time_map_path=test_data_dir + "3x3_sixes.fits",
            background_sky_map_path=test_data_dir + "3x3_sevens.fits",
            convert_from_electrons=True,
            renormalize_psf=False,
        )

        image = aa.array.ones(shape_2d=(3,3))
        background_noise_map = aa.array.manual_2d(
            array=4.0 * np.ones((3, 3))
        )

        noise_map_converted = al.NoiseMap.from_image_and_background_noise_map(
            image=image,
            background_noise_map=background_noise_map,
            gain=None,
            exposure_time_map=imaging_data.exposure_time_map,
            convert_from_electrons=True,
        )

        noise_map_converted = noise_map_converted / 6.0

        assert (imaging_data.image.in_2d == np.ones((3, 3)) / 6.0).all()
        assert (imaging_data.psf.in_2d == 2.0 * np.ones((3, 3))).all()
github Jammy2211 / PyAutoLens / test_autolens / unit / data / test_imaging.py View on Github external
def test__same_as_above_but_different_image_values_in_each_pixel_and_new_background_values(
            self
        ):
            # Can use pattern from previous test_autoarray for values

            image = aa.array.manual_2d(
                array=[[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]
            )

            exposure_time = aa.array.ones(shape_2d=(3,2))
            background_noise = aa.array.full(fill_value=12.0, shape_2d=(3,2))

            imaging_data = al.ImagingData(
                image=image,
                pixel_scales=1.0,
                psf=aa.kernel.ones(shape_2d=(3,3)),
                exposure_time_map=exposure_time,
                background_noise_map=background_noise,
            )

            assert imaging_data.estimated_noise_map.in_2d == pytest.approx(
                np.array(
                    [
                        [np.sqrt(1.0 + 144.0), np.sqrt(2.0 + 144.0)],
                        [np.sqrt(3.0 + 144.0), np.sqrt(4.0 + 144.0)],
                        [np.sqrt(5.0 + 144.0), np.sqrt(6.0 + 144.0)],
github Jammy2211 / PyAutoLens / test_autolens / unit / data / test_imaging.py View on Github external
def test__image_and_exposure_times_all_1s__background_is_float_sqrt_3__noise_is_all_2s(
            self
        ):
            # Imaging (eps) = 1.0
            # Background (eps) = sqrt(3.0)
            # Exposure times = 1.0 s
            # Imaging (counts) = 1.0
            # Background (counts) = sqrt(3.0)

            # Noise (counts) = sqrt(1.0 + sqrt(3.0)**2) = sqrt(1.0 + 3.0) = 2.0
            # Noise (eps) = 2.0 / 1.0 = 2.0

            image = aa.array.ones(shape_2d=(3,3))

            exposure_time = aa.array.ones(shape_2d=(3,3))

            background_noise = aa.array.full(fill_value=3.0 ** 0.5, shape_2d=(3,3))

            imaging_data = al.ImagingData(
                image=image,
                pixel_scales=1.0,
                psf=aa.kernel.ones(shape_2d=(3,3)),
                exposure_time_map=exposure_time,
                background_noise_map=background_noise,
            )

            assert imaging_data.estimated_noise_map.in_2d == pytest.approx(
                2.0 * np.ones((3, 3)), 1e-2
            )
github Jammy2211 / PyAutoLens / test_autolens / unit / data / test_imaging.py View on Github external
def test__image_all_4s__exposure_time_all_1s__no_background__noise_is_all_2s(
            self
        ):
            # Imaging (eps) = 4.0
            # Background (eps) = 0.0
            # Exposure times = 1.0 s
            # Imaging (counts) = 4.0
            # Background (counts) = 0.0

            # Noise (counts) = sqrt(4.0 + 0.0**2) = 2.0
            # Noise (eps) = 2.0 / 1.0

            image = aa.array.full(fill_value=4.0, shape_2d=(4, 2))

            exposure_time = aa.array.ones(shape_2d=(4,2))
            background_noise = aa.array.zeros(shape_2d=(4,2))

            imaging_data = al.ImagingData(
                image=image,
                pixel_scales=1.0,
                psf=aa.kernel.ones(shape_2d=(3,3)),
                exposure_time_map=exposure_time,
                background_noise_map=background_noise,
            )

            assert (
                imaging_data.estimated_noise_map.in_2d == 2.0 * np.ones((4, 2))
            ).all()
github Jammy2211 / PyAutoLens / test_autolens / unit / data / test_imaging.py View on Github external
def test__all_components_resized__psf_is_not(self):
            image = aa.array.manual_2d(array=np.ones((6, 6)), pixel_scales=1.0)
            image[21] = 2.0

            noise_map_array = aa.array.ones(shape_2d=(6,6))
            noise_map_array[21] = 3.0

            background_noise_map_array = aa.array.ones(shape_2d=(6,6))
            background_noise_map_array[21] = 4.0

            exposure_time_map_array = aa.array.ones(shape_2d=(6,6))
            exposure_time_map_array[21] = 5.0

            background_sky_map_array = aa.array.ones(shape_2d=(6,6))
            background_sky_map_array[21] = 6.0

            imaging_data = al.ImagingData(
                image=image,
                pixel_scales=1.0,
                psf=aa.kernel.zeros(shape_2d=(3,3)),
                noise_map=noise_map_array,
                background_noise_map=background_noise_map_array,
                exposure_time_map=exposure_time_map_array,
                background_sky_map=background_sky_map_array,
github Jammy2211 / PyAutoLens / test_autolens / unit / data / test_imaging.py View on Github external
def test__convert_from_electrons__image_all_negative_2s__bg_noise_all_1s__exposure_time_all_10s__noise_map_all_1s(
            self
        ):
            imaging_data = aa.array.full(fill_value=-2.0, shape_2d=(2,2))
            background_noise_map = aa.array.ones(shape_2d=(2,2))
            exposure_time_map = aa.array.full(fill_value=10.0, shape_2d=(2,2))

            noise_map = al.NoiseMap.from_image_and_background_noise_map(
                image=imaging_data,
                background_noise_map=background_noise_map,
                exposure_time_map=exposure_time_map,
                gain=1.0,
                convert_from_electrons=True,
            )

            assert (noise_map.in_2d == np.array([[1.0, 1.0], [1.0, 1.0]])).all()
github Jammy2211 / PyAutoLens / test_autolens / unit / data / test_imaging.py View on Github external
def test__noise_map_creates_nans_due_to_low_exposure_time__raises_error(self):
        image = aa.array.manual_2d(array=np.ones((9, 9)))

        psf = aa.kernel.no_blur()

        exposure_time_map = aa.array.ones(shape_2d=image.mask.shape
        )

        background_sky_map = aa.array.ones(shape_2d=image.mask.shape
        )

        with pytest.raises(exc.DataException):
            al.SimulatedImagingData.from_image_and_exposure_arrays(
                image=image,
                psf=psf,
                exposure_time=1.0,
                exposure_time_map=exposure_time_map,
                background_sky_map=background_sky_map,
                add_noise=True,
                noise_seed=1,
            )
github Jammy2211 / PyAutoLens / test_autolens / unit / data / test_imaging.py View on Github external
def test__image_all_2s_and_3s__exposure_time_all_1s__noise_map_all_sqrt_2s_and_3s(
            self
        ):
            imaging_data = aa.array.manual_2d([[2.0, 2.0], [3.0, 3.0]])
            exposure_time_map = aa.array.ones(shape_2d=(2,2))

            poisson_noise_map = al.PoissonNoiseMap.from_image_and_exposure_time_map(
                image=imaging_data,
                exposure_time_map=exposure_time_map,
                gain=1.0,
            )

            assert (
                poisson_noise_map.in_2d
                == np.array(
                    [[np.sqrt(2.0), np.sqrt(2.0)], [np.sqrt(3.0), np.sqrt(3.0)]]
                )
github Jammy2211 / PyAutoLens / test_autolens / unit / data / test_imaging.py View on Github external
def test__image_all_1s__exposure_time_all_1s__noise_map_all_1s__gain_is_2__ignores_gain(
            self
        ):
            imaging_data = aa.array.ones(shape_2d=(2,2))
            exposure_time_map = aa.array.ones(shape_2d=(2,2))

            poisson_noise_map = al.PoissonNoiseMap.from_image_and_exposure_time_map(
                image=imaging_data,
                exposure_time_map=exposure_time_map,
                gain=2.0,
            )

            assert (
                poisson_noise_map.in_2d
                == np.array(
                    [[np.sqrt(1.0), np.sqrt(1.0)], [np.sqrt(1.0), np.sqrt(1.0)]]
                )